Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline | |
#from transformers import pipeline | |
from numpy import exp | |
import pandas as pd | |
from PIL import Image | |
import urllib.request | |
import uuid | |
uid=uuid.uuid4() | |
models=[ | |
"Nahrawy/AIorNot", | |
"umm-maybe/AI-image-detector", | |
"arnolfokam/ai-generated-image-detector", | |
] | |
pipe0 = pipeline("image-classification", f"{models[0]}") | |
pipe1 = pipeline("image-classification", f"{models[1]}") | |
pipe2 = pipeline("image-classification", f"{models[2]}") | |
fin_sum=[] | |
def image_classifier0(image): | |
labels = ["AI","Real"] | |
outputs = pipe0(image) | |
results = {} | |
result_test={} | |
for idx,result in enumerate(outputs): | |
results[labels[idx]] = outputs[idx]['score'] | |
#print (result_test) | |
#for result in outputs: | |
# results[result['label']] = result['score'] | |
#print (results) | |
fin_sum.append(results) | |
return results | |
def image_classifier1(image): | |
labels = ["AI","Real"] | |
outputs = pipe1(image) | |
results = {} | |
result_test={} | |
for idx,result in enumerate(outputs): | |
results[labels[idx]] = outputs[idx]['score'] | |
#print (result_test) | |
#for result in outputs: | |
# results[result['label']] = result['score'] | |
#print (results) | |
fin_sum.append(results) | |
return results | |
def image_classifier2(image): | |
labels = ["AI","Real"] | |
outputs = pipe2(image) | |
results = {} | |
result_test={} | |
for idx,result in enumerate(outputs): | |
results[labels[idx]] = outputs[idx]['score'] | |
#print (result_test) | |
#for result in outputs: | |
# results[result['label']] = result['score'] | |
#print (results) | |
fin_sum.append(results) | |
return results | |
def softmax(vector): | |
e = exp(vector) | |
return e / e.sum() | |
def aiornot0(image): | |
labels = ["Real", "AI"] | |
mod=models[0] | |
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) | |
model0 = AutoModelForImageClassification.from_pretrained(mod) | |
input = feature_extractor0(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model0(**input) | |
logits = outputs.logits | |
probability = softmax(logits) | |
px = pd.DataFrame(probability.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = labels[prediction] | |
html_out = f""" | |
<h1>This image is likely: {label}</h1><br><h3> | |
Probabilites:<br> | |
Real: {px[0][0]}<br> | |
AI: {px[1][0]}""" | |
results = {} | |
for idx,result in enumerate(px): | |
results[labels[idx]] = px[idx][0] | |
#results[labels['label']] = result['score'] | |
fin_sum.append(results) | |
return gr.HTML.update(html_out),results | |
def aiornot1(image): | |
labels = ["AI", "Real"] | |
mod=models[1] | |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) | |
model1 = AutoModelForImageClassification.from_pretrained(mod) | |
input = feature_extractor1(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model1(**input) | |
logits = outputs.logits | |
probability = softmax(logits) | |
px = pd.DataFrame(probability.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = labels[prediction] | |
html_out = f""" | |
<h1>This image is likely: {label}</h1><br><h3> | |
Probabilites:<br> | |
Real: {px[0][0]}<br> | |
AI: {px[1][0]}""" | |
results = {} | |
for idx,result in enumerate(px): | |
results[labels[idx]] = px[idx][0] | |
#results[labels['label']] = result['score'] | |
fin_sum.append(results) | |
return gr.HTML.update(html_out),results | |
def aiornot2(image): | |
labels = ["Real", "AI"] | |
mod=models[2] | |
feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") | |
model2 = AutoModelForImageClassification.from_pretrained(mod) | |
input = feature_extractor2(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model2(**input) | |
logits = outputs.logits | |
probability = softmax(logits) | |
px = pd.DataFrame(probability.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = labels[prediction] | |
html_out = f""" | |
<h1>This image is likely: {label}</h1><br><h3> | |
Probabilites:<br> | |
Real: {px[1][0]}<br> | |
AI: {px[0][0]}""" | |
results = {} | |
for idx,result in enumerate(px): | |
results[labels[idx]] = px[idx][0] | |
#results[labels['label']] = result['score'] | |
fin_sum.append(results) | |
return gr.HTML.update(html_out),results | |
def load_url(url): | |
try: | |
urllib.request.urlretrieve( | |
f'{url}', | |
f"{uid}tmp_im.png") | |
image = Image.open(f"{uid}tmp_im.png") | |
mes = "Image Loaded" | |
except Exception as e: | |
image=None | |
mes=f"Image not Found<br>Error: {e}" | |
return image,mes | |
def tot_prob(): | |
try: | |
fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"] | |
fin_out = fin_out/6 | |
fin_sub = 1-fin_out | |
out={ | |
"Real":f"{fin_out}", | |
"AI":f"{fin_sub}" | |
} | |
#fin_sum.clear() | |
#print (fin_out) | |
return out | |
except Exception as e: | |
pass | |
print (e) | |
return None | |
def fin_clear(): | |
fin_sum.clear() | |
return None | |
with gr.Blocks() as app: | |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""") | |
with gr.Column(): | |
inp = gr.Image(type='pil') | |
in_url=gr.Textbox(label="Image URL") | |
with gr.Row(): | |
load_btn=gr.Button("Load URL") | |
btn = gr.Button("Detect AI") | |
mes = gr.HTML("""""") | |
with gr.Group(): | |
with gr.Row(): | |
fin=gr.Label(label="Final Probability") | |
with gr.Row(): | |
with gr.Box(): | |
lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[0]}'>{models[0]}</a></b>""") | |
nun0 = gr.HTML("""""") | |
with gr.Box(): | |
lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[1]}'>{models[1]}</a></b>""") | |
nun1 = gr.HTML("""""") | |
with gr.Box(): | |
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[2]}'>{models[2]}</a></b>""") | |
nun2 = gr.HTML("""""") | |
with gr.Row(): | |
with gr.Box(): | |
n_out0=gr.Label(label="Output") | |
outp0 = gr.HTML("""""") | |
with gr.Box(): | |
n_out1=gr.Label(label="Output") | |
outp1 = gr.HTML("""""") | |
with gr.Box(): | |
n_out2=gr.Label(label="Output") | |
outp2 = gr.HTML("""""") | |
with gr.Row(): | |
with gr.Box(): | |
n_out3=gr.Label(label="Output") | |
outp3 = gr.HTML("""""") | |
with gr.Box(): | |
n_out4=gr.Label(label="Output") | |
outp4 = gr.HTML("""""") | |
with gr.Box(): | |
n_out5=gr.Label(label="Output") | |
outp5 = gr.HTML("""""") | |
hid_box=gr.Textbox(visible=False) | |
def upd(image): | |
cv2.imwrite(f"{rand_im}-vid_tmp_proc.png", image) | |
out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png") | |
out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}' | |
return out_url | |
inp.change(upd,inp,inp) | |
btn.click(fin_clear,None,fin,show_progress=False) | |
load_btn.click(load_url,in_url,[inp,mes]) | |
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False) | |
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False) | |
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False) | |
btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False) | |
btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False) | |
btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False) | |
app.queue(concurrency_count=60).launch() |