import tensorflow as tf import numpy as np from tensorflow import keras from keras.layers import Input, Lambda, Dense, Flatten, Rescaling from keras.models import Model import PIL from PIL import Image import gradio as gr import matplotlib.cm as cm base_model = keras.applications.Xception( # weights = "../input/xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5", input_shape = (160,160,3), include_top = False,) base_model.trainable = False def img_pros(img): img = tf.keras.preprocessing.image.img_to_array(img) img = tf.image.resize(img, [160,160]) img = tf.expand_dims(img, axis = 0) return img #function for creating model #returns model, its inputs, Xception's last conv output, the whole model's outputs def create_model_mod(classes, activation): inputs = keras.Input(shape = (160,160,3)) #normalizing pixel values r = Rescaling(scale = 1./255)(inputs) x = base_model(r, training = False) gap = keras.layers.GlobalAveragePooling2D()(x) outputs = keras.layers.Dense(classes ,activation = activation)(gap) model = keras.Model(inputs, outputs) if activation == "linear": loss_s = keras.losses.BinaryCrossentropy(from_logits = True) else: loss_s = keras.losses.BinaryCrossentropy() model.compile( loss = loss_s, optimizer = keras.optimizers.Adam(0.001), metrics = ["accuracy"] ) return model, inputs, x, outputs #function that creates a gradcam model and returns it def create_grad_model(weights, classes, activation): model_mod, input, x, output = create_model_mod(classes, activation) #lodaing weights of already trained model model_mod.load_weights(weights) grad_model = Model(input, [x, output]) return grad_model #create heatmaps of the given images #returns the heatmaps and the raw score of predicted class of each image def create_heatmap(model, imgs, class_index): model.layers[-1].activation = None #predicting the images and getting the conv outputs and predictions from the gradcam model with tf.GradientTape() as tape: maps, preds = model(imgs); # class_channel = tf.expand_dims(preds[:,class_index],axis = 1) class_channel = preds[:, class_index] #computing gradients of predictions w.r.t the feature maps if class_index == -1: grads = tape.gradient(preds, maps) else: grads = tape.gradient(class_channel, maps) # global average pooling of each feature map gap_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) #multiplying each pooled value with its correponding feature map # maps = maps[0] heatmap = maps @ gap_grads[..., tf.newaxis] #removing the extra dimension of value 1 heatmap = tf.squeeze(heatmap) #applying relu activation heatmap = tf.keras.activations.relu(heatmap) return heatmap, preds.numpy() #superimpose function buth for a single input image def superimpose_single(heatmap, img, alpha = 0.4): heatmap = np.uint8(255 * heatmap) # Use jet colormap to colorize heatmap jet = cm.get_cmap("jet") # Use RGB values of the colormap jet_colors = jet(np.arange(256))[:, :3] jet_heatmap = jet_colors[heatmap] # Create an image with RGB colorized heatmap jet_heatmap = keras.utils.array_to_img(jet_heatmap) jet_heatmap = jet_heatmap.resize((160,160)) jet_heatmap = keras.utils.img_to_array(jet_heatmap) # Superimpose the heatmap on original image superimposed_img = jet_heatmap * alpha + img # superimposed_img = keras.utils.array_to_img(superimposed_img) return superimposed_img #for generating single gradcam image def gen_grad_img_single(grad_model, img, class_index, alpha = 0.4): heatmaps, y_pred = create_heatmap(grad_model, img, class_index) # for i in range(len(y_pred)): # if y_pred[i] > 0.5: y_pred[i] = 1 # else: y_pred[i] = 0 img = superimpose_single(heatmaps, img[0]) return np.array(img).astype('uint8'), y_pred def gen_grad_both(grad_model, img): img_c, y_pred_c = gen_grad_img_single(grad_model, img, 0) img_d, y_pred_d = gen_grad_img_single(grad_model, img, 1) y_pred_c = np.around(y_pred_c,3) y_pred_d = np.around(y_pred_d,3) # show_imgs([img_c, img_d], [y_true, y_true], [size[0], size[1]], cols, [y_pred_c, y_pred_d], font_size = font_size) infer = "" if y_pred_c[0][0] > y_pred_c[0][1]: infer = "cat" else: infer = "dog" return img_c, img_d, y_pred_c, infer weights = "weights_nm.h5" def get_grad(img): img = img_pros(img) grad_model = create_grad_model(weights, 2, "softmax") grad_img_c, grad_img_d, y_pred, infer = gen_grad_both(grad_model, img) # pred_class = "" # if y_pred[0] > 0.5: pred_class = "cat" # else: pred_class = "dog" text = "Raw Score: " + str(y_pred[0]) + "\nClassification: " + infer return grad_img_c, grad_img_d, text # demo = gr.Interface( # fn = get_grad, # with gr.Row(): # inputs = gr.Image(type = "pil", shape = (224,224), width = 320, height = 320), # outputs = [gr.Image(type = "numpy", width = 320, height = 320, label = "Grad_CAM w.r.t cat"), gr.Image(type = "numpy", width = 320, height = 320, label = "Grad_CAM w.r.t dog"), gr.Textbox(label = 'Prediction', info = '[P of cat, P of dog]')], # description = "Visual Explanations from Deep Networks", # title = "Gradient-Weighted Class Activation Mapping (Grad-CAM)" # ) with gr.Blocks() as demo: with gr.Row().style(equal_height=True): img_input = gr.Image(type = "pil", shape = (224,224), width = 320, height = 320) img_output1 = gr.Image(type = "numpy", width = 320, height = 320, label = "Grad_CAM w.r.t cat") img_output2 = gr.Image(type = "numpy", width = 320, height = 320, label = "Grad_CAM w.r.t dog") demo.launch()