update submit
Browse files- src/submission/submit.py +250 -56
src/submission/submit.py
CHANGED
@@ -1,8 +1,17 @@
|
|
1 |
-
import json
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from datetime import datetime, timezone
|
4 |
import random
|
5 |
|
|
|
|
|
|
|
6 |
import torch
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
@@ -10,6 +19,9 @@ from datasets import load_dataset
|
|
10 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
|
|
|
|
|
|
|
13 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
14 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
|
15 |
from src.submission.check_validity import (
|
@@ -19,11 +31,20 @@ from src.submission.check_validity import (
|
|
19 |
is_model_on_hub,
|
20 |
)
|
21 |
|
|
|
|
|
|
|
22 |
import spaces
|
23 |
|
|
|
|
|
|
|
24 |
REQUESTED_MODELS = None
|
25 |
USERS_TO_SUBMISSION_DATES = None
|
26 |
|
|
|
|
|
|
|
27 |
# List of subjects to exclude from evaluation
|
28 |
excluded_subjects = [
|
29 |
"human_sexuality",
|
@@ -35,8 +56,11 @@ excluded_subjects = [
|
|
35 |
"world_religions"
|
36 |
]
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
if torch.cuda.is_available():
|
41 |
model = model.cuda()
|
42 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
@@ -44,48 +68,93 @@ def get_top_prediction(text, tokenizer, model):
|
|
44 |
model = model.cpu()
|
45 |
inputs = {k: v.cpu() for k, v in inputs.items()}
|
46 |
|
|
|
|
|
|
|
47 |
with torch.no_grad():
|
48 |
outputs = model(**inputs)
|
49 |
-
logits = outputs.logits[
|
|
|
|
|
|
|
50 |
|
51 |
options = [' A', ' B', ' C', ' D']
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
else:
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
if not option_logits:
|
64 |
-
return "No valid options"
|
65 |
|
66 |
-
top_option = max(option_logits, key=lambda x: x[0])[1]
|
67 |
-
return top_option
|
68 |
|
69 |
@spaces.GPU(duration=120)
|
70 |
-
def evaluate_model_accuracy_by_subject(model_name, num_questions_per_subject=100):
|
71 |
try:
|
|
|
72 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
73 |
tokenizer.pad_token = tokenizer.eos_token
|
74 |
|
|
|
|
|
|
|
75 |
model = AutoModelForCausalLM.from_pretrained(
|
76 |
model_name,
|
77 |
trust_remote_code=True
|
78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
if torch.cuda.is_available():
|
80 |
model = model.cuda() # Move model to GPU if available
|
81 |
else:
|
82 |
model = model.cpu()
|
83 |
|
|
|
|
|
|
|
|
|
84 |
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
|
85 |
dataset = dataset['test']
|
86 |
|
|
|
|
|
|
|
|
|
87 |
dataset = dataset.filter(lambda x: x['Subject'] not in excluded_subjects)
|
88 |
|
|
|
|
|
|
|
|
|
89 |
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
|
90 |
Question: {Question}
|
91 |
A) {A}
|
@@ -94,20 +163,30 @@ C) {C}
|
|
94 |
D) {D}
|
95 |
Answer:"""
|
96 |
|
|
|
|
|
|
|
97 |
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
|
98 |
|
|
|
|
|
|
|
|
|
99 |
subject_results = {}
|
100 |
overall_correct_predictions = 0
|
101 |
overall_total_questions = 0
|
102 |
|
103 |
-
subjects = dataset.unique('Subject')
|
104 |
|
105 |
-
# To track best performance per subject
|
106 |
-
best_in_class = {subject: {"model_name": None, "accuracy": 0} for subject in subjects}
|
107 |
|
|
|
|
|
108 |
for subject in subjects:
|
109 |
subject_data = dataset.filter(lambda x: x['Subject'] == subject)
|
110 |
|
|
|
|
|
|
|
|
|
111 |
if num_questions_per_subject > 0:
|
112 |
if len(subject_data) < num_questions_per_subject:
|
113 |
print(f"Warning: Not enough questions for subject '{subject}'. Using all available questions.")
|
@@ -116,40 +195,74 @@ Answer:"""
|
|
116 |
selected_indices = random.sample(range(len(subject_data)), num_questions_per_subject)
|
117 |
subject_data = subject_data.select(selected_indices)
|
118 |
|
|
|
|
|
|
|
119 |
correct_predictions = 0
|
120 |
total_questions = 0
|
121 |
results = []
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
accuracy = correct_predictions / total_questions if total_questions > 0 else 0
|
147 |
|
148 |
-
# Check if this model is the best for the current subject
|
149 |
-
if accuracy > best_in_class[subject]['accuracy']:
|
150 |
-
best_in_class[subject]['model_name'] = model_name
|
151 |
-
best_in_class[subject]['accuracy'] = accuracy
|
152 |
|
|
|
|
|
|
|
153 |
subject_results[subject] = {
|
154 |
'Correct Predictions': correct_predictions,
|
155 |
'Total Questions': total_questions,
|
@@ -157,20 +270,27 @@ Answer:"""
|
|
157 |
'Results DataFrame': pd.DataFrame(results)
|
158 |
}
|
159 |
|
|
|
|
|
|
|
160 |
overall_accuracy = (overall_correct_predictions / overall_total_questions) * 100 if overall_total_questions > 0 else 0
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
except Exception as e:
|
165 |
import traceback
|
166 |
tb = traceback.format_exc()
|
167 |
print(f"Error in evaluate_model_accuracy_by_subject: {e}\n{tb}")
|
168 |
-
return f"Error: {str(e)}", {}
|
|
|
|
|
169 |
|
170 |
-
def display_best_in_class(best_in_class):
|
171 |
-
print("\nBest Model in Each Subject:\n")
|
172 |
-
for subject, info in best_in_class.items():
|
173 |
-
print(f"{subject}: {info['model_name']} with accuracy: {info['accuracy'] * 100:.2f}%")
|
174 |
|
175 |
def add_new_eval(
|
176 |
model: str,
|
@@ -185,41 +305,101 @@ def add_new_eval(
|
|
185 |
if not REQUESTED_MODELS:
|
186 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
187 |
|
|
|
|
|
|
|
188 |
user_name = ""
|
189 |
model_path = model
|
190 |
if "/" in model:
|
191 |
user_name = model.split("/")[0]
|
192 |
model_path = model.split("/")[1]
|
193 |
|
|
|
|
|
|
|
194 |
precision = precision.split(" ")[0]
|
195 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
196 |
|
|
|
|
|
|
|
197 |
if model_type is None or model_type == "":
|
198 |
return styled_error("Please select a model type.")
|
199 |
|
|
|
|
|
|
|
200 |
# Does the model actually exist?
|
201 |
if revision == "":
|
202 |
revision = "main"
|
203 |
|
|
|
|
|
|
|
|
|
204 |
if weight_type in ["Delta", "Adapter"]:
|
205 |
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
206 |
if not base_model_on_hub:
|
207 |
return styled_error(f'Base model "{base_model}" {error}')
|
208 |
|
|
|
|
|
|
|
209 |
if not weight_type == "Adapter":
|
210 |
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
211 |
if not model_on_hub:
|
212 |
return styled_error(f'Model "{model}" {error}')
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
try:
|
215 |
-
overall_accuracy, subject_results
|
216 |
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
|
217 |
return styled_error(overall_accuracy)
|
218 |
except Exception as e:
|
219 |
return styled_error(f"An error occurred during evaluation: {str(e)}")
|
220 |
|
221 |
-
|
222 |
-
|
223 |
|
224 |
# Prepare results for storage
|
225 |
results_dict = {
|
@@ -231,22 +411,35 @@ def add_new_eval(
|
|
231 |
"weight_type": weight_type,
|
232 |
"model_type": model_type,
|
233 |
"submitted_time": current_time,
|
|
|
|
|
|
|
|
|
234 |
},
|
235 |
"results": {
|
236 |
"average": overall_accuracy,
|
237 |
},
|
238 |
}
|
239 |
|
|
|
|
|
|
|
240 |
# Include per-subject accuracies
|
241 |
for subject, data in subject_results.items():
|
242 |
accuracy = data['Accuracy']
|
243 |
results_dict['results'][subject] = accuracy
|
244 |
|
|
|
|
|
|
|
245 |
# Save results to a JSON file
|
246 |
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
|
247 |
with open(results_file_path, "w") as f:
|
248 |
json.dump(results_dict, f, indent=4)
|
249 |
|
|
|
|
|
|
|
250 |
# Upload the results file
|
251 |
API.upload_file(
|
252 |
path_or_fileobj=results_file_path,
|
@@ -256,6 +449,7 @@ def add_new_eval(
|
|
256 |
commit_message=f"Add results for {model}"
|
257 |
)
|
258 |
|
|
|
259 |
os.remove(results_file_path)
|
260 |
|
261 |
return styled_message("Your model has been evaluated and the results are now on the leaderboard!")
|
|
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
|
4 |
+
# Set environment variable for better memory management
|
5 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
|
6 |
+
|
7 |
+
|
8 |
+
import json
|
9 |
from datetime import datetime, timezone
|
10 |
import random
|
11 |
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
import torch
|
16 |
import pandas as pd
|
17 |
import numpy as np
|
|
|
19 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
20 |
from langchain.prompts import PromptTemplate
|
21 |
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
26 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
|
27 |
from src.submission.check_validity import (
|
|
|
31 |
is_model_on_hub,
|
32 |
)
|
33 |
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
import spaces
|
38 |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
REQUESTED_MODELS = None
|
43 |
USERS_TO_SUBMISSION_DATES = None
|
44 |
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
# List of subjects to exclude from evaluation
|
49 |
excluded_subjects = [
|
50 |
"human_sexuality",
|
|
|
56 |
"world_religions"
|
57 |
]
|
58 |
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def get_top_prediction(batch_texts, tokenizer, model):
|
63 |
+
inputs = tokenizer(batch_texts, return_tensors='pt', padding=True, truncation=True)
|
64 |
if torch.cuda.is_available():
|
65 |
model = model.cuda()
|
66 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
|
|
68 |
model = model.cpu()
|
69 |
inputs = {k: v.cpu() for k, v in inputs.items()}
|
70 |
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
with torch.no_grad():
|
75 |
outputs = model(**inputs)
|
76 |
+
logits = outputs.logits[:, -1, :] # Get logits of the last token for each input in the batch
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
|
81 |
options = [' A', ' B', ' C', ' D']
|
82 |
+
predictions = []
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
for i in range(len(batch_texts)):
|
88 |
+
option_logits = []
|
89 |
+
for option in options:
|
90 |
+
option_ids = tokenizer(option).input_ids
|
91 |
+
if option_ids and option_ids[-1] < logits.size(1):
|
92 |
+
option_logit = logits[i, option_ids[-1]].item()
|
93 |
+
option_logits.append((option_logit, option.strip()))
|
94 |
+
else:
|
95 |
+
print(f"Skipping option '{option}' due to index out of range for input {i}.")
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
if not option_logits:
|
101 |
+
predictions.append("No valid options")
|
102 |
else:
|
103 |
+
top_option = max(option_logits, key=lambda x: x[0])[1]
|
104 |
+
predictions.append(top_option)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
return predictions
|
110 |
+
|
111 |
|
|
|
|
|
112 |
|
|
|
|
|
113 |
|
114 |
@spaces.GPU(duration=120)
|
115 |
+
def evaluate_model_accuracy_by_subject(model_name, num_questions_per_subject=100, batch_size=32):
|
116 |
try:
|
117 |
+
# Load the model and tokenizer
|
118 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
119 |
tokenizer.pad_token = tokenizer.eos_token
|
120 |
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
model = AutoModelForCausalLM.from_pretrained(
|
125 |
model_name,
|
126 |
trust_remote_code=True
|
127 |
)
|
128 |
+
|
129 |
+
|
130 |
+
# Convert model to FP16 (half precision) to reduce memory usage
|
131 |
+
model = model.half()
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
if torch.cuda.is_available():
|
137 |
model = model.cuda() # Move model to GPU if available
|
138 |
else:
|
139 |
model = model.cpu()
|
140 |
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
# Load your custom MMMLU dataset from HuggingFace
|
145 |
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
|
146 |
dataset = dataset['test']
|
147 |
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
# Filter out excluded subjects
|
152 |
dataset = dataset.filter(lambda x: x['Subject'] not in excluded_subjects)
|
153 |
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
# Define prompt template
|
158 |
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
|
159 |
Question: {Question}
|
160 |
A) {A}
|
|
|
163 |
D) {D}
|
164 |
Answer:"""
|
165 |
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
|
170 |
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
# Initialize results storage
|
175 |
subject_results = {}
|
176 |
overall_correct_predictions = 0
|
177 |
overall_total_questions = 0
|
178 |
|
|
|
179 |
|
|
|
|
|
180 |
|
181 |
+
|
182 |
+
subjects = dataset.unique('Subject')
|
183 |
for subject in subjects:
|
184 |
subject_data = dataset.filter(lambda x: x['Subject'] == subject)
|
185 |
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
# Sample num_questions_per_subject from each subject
|
190 |
if num_questions_per_subject > 0:
|
191 |
if len(subject_data) < num_questions_per_subject:
|
192 |
print(f"Warning: Not enough questions for subject '{subject}'. Using all available questions.")
|
|
|
195 |
selected_indices = random.sample(range(len(subject_data)), num_questions_per_subject)
|
196 |
subject_data = subject_data.select(selected_indices)
|
197 |
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
correct_predictions = 0
|
202 |
total_questions = 0
|
203 |
results = []
|
204 |
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
model.eval()
|
209 |
+
# Batch processing
|
210 |
+
for i in range(0, len(subject_data), batch_size):
|
211 |
+
batch_data = subject_data[i:i + batch_size]
|
212 |
+
|
213 |
+
# Generate batch texts
|
214 |
+
batch_texts = [
|
215 |
+
prompt_template.format(
|
216 |
+
Question=batch_data['Question'][j],
|
217 |
+
A=batch_data['A'][j],
|
218 |
+
B=batch_data['B'][j],
|
219 |
+
C=batch_data['C'][j],
|
220 |
+
D=batch_data['D'][j]
|
221 |
+
) for j in range(len(batch_data['Question']))
|
222 |
+
]
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
# Get the top predictions for the batch
|
228 |
+
batch_predictions = get_top_prediction(batch_texts, tokenizer, model)
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
for j in range(len(batch_data['Question'])):
|
234 |
+
top_prediction = batch_predictions[j]
|
235 |
+
is_correct = (top_prediction == batch_data['Answer'][j])
|
236 |
+
correct_predictions += int(is_correct)
|
237 |
+
total_questions += 1
|
238 |
+
overall_correct_predictions += int(is_correct)
|
239 |
+
overall_total_questions += 1
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
results.append({
|
245 |
+
'Question': batch_data['Question'][j],
|
246 |
+
'Answer': batch_data['Answer'][j],
|
247 |
+
'Prediction': top_prediction,
|
248 |
+
'Correct': is_correct
|
249 |
+
})
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
# Clear GPU memory after processing each subject
|
255 |
+
torch.cuda.empty_cache()
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
|
260 |
accuracy = correct_predictions / total_questions if total_questions > 0 else 0
|
261 |
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
|
264 |
+
|
265 |
+
# Store results for this subject
|
266 |
subject_results[subject] = {
|
267 |
'Correct Predictions': correct_predictions,
|
268 |
'Total Questions': total_questions,
|
|
|
270 |
'Results DataFrame': pd.DataFrame(results)
|
271 |
}
|
272 |
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
overall_accuracy = (overall_correct_predictions / overall_total_questions) * 100 if overall_total_questions > 0 else 0
|
277 |
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
return overall_accuracy, subject_results
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
|
286 |
except Exception as e:
|
287 |
import traceback
|
288 |
tb = traceback.format_exc()
|
289 |
print(f"Error in evaluate_model_accuracy_by_subject: {e}\n{tb}")
|
290 |
+
return f"Error: {str(e)}", {}
|
291 |
+
|
292 |
+
|
293 |
|
|
|
|
|
|
|
|
|
294 |
|
295 |
def add_new_eval(
|
296 |
model: str,
|
|
|
305 |
if not REQUESTED_MODELS:
|
306 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
307 |
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
user_name = ""
|
312 |
model_path = model
|
313 |
if "/" in model:
|
314 |
user_name = model.split("/")[0]
|
315 |
model_path = model.split("/")[1]
|
316 |
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
precision = precision.split(" ")[0]
|
321 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
322 |
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
if model_type is None or model_type == "":
|
327 |
return styled_error("Please select a model type.")
|
328 |
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
# Does the model actually exist?
|
333 |
if revision == "":
|
334 |
revision = "main"
|
335 |
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
# Is the model on the hub?
|
340 |
if weight_type in ["Delta", "Adapter"]:
|
341 |
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
342 |
if not base_model_on_hub:
|
343 |
return styled_error(f'Base model "{base_model}" {error}')
|
344 |
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
if not weight_type == "Adapter":
|
349 |
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
350 |
if not model_on_hub:
|
351 |
return styled_error(f'Model "{model}" {error}')
|
352 |
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
# Is the model info correctly filled?
|
357 |
+
try:
|
358 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
359 |
+
except Exception:
|
360 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
# Were the model card and license filled?
|
371 |
+
try:
|
372 |
+
license = model_info.cardData["license"]
|
373 |
+
except Exception:
|
374 |
+
return styled_error("Please select a license for your model")
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
modelcard_OK, error_msg = check_model_card(model)
|
380 |
+
if not modelcard_OK:
|
381 |
+
return styled_error(error_msg)
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
# Check for duplicate submission
|
387 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
388 |
+
return styled_warning("This model has been already submitted.")
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
# Now, perform the evaluation
|
394 |
try:
|
395 |
+
overall_accuracy, subject_results = evaluate_model_accuracy_by_subject(model, num_questions_per_subject=100, batch_size=32)
|
396 |
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
|
397 |
return styled_error(overall_accuracy)
|
398 |
except Exception as e:
|
399 |
return styled_error(f"An error occurred during evaluation: {str(e)}")
|
400 |
|
401 |
+
|
402 |
+
|
403 |
|
404 |
# Prepare results for storage
|
405 |
results_dict = {
|
|
|
411 |
"weight_type": weight_type,
|
412 |
"model_type": model_type,
|
413 |
"submitted_time": current_time,
|
414 |
+
"license": license,
|
415 |
+
"likes": model_info.likes,
|
416 |
+
"params": model_size,
|
417 |
+
"still_on_hub": True,
|
418 |
},
|
419 |
"results": {
|
420 |
"average": overall_accuracy,
|
421 |
},
|
422 |
}
|
423 |
|
424 |
+
|
425 |
+
|
426 |
+
|
427 |
# Include per-subject accuracies
|
428 |
for subject, data in subject_results.items():
|
429 |
accuracy = data['Accuracy']
|
430 |
results_dict['results'][subject] = accuracy
|
431 |
|
432 |
+
|
433 |
+
|
434 |
+
|
435 |
# Save results to a JSON file
|
436 |
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
|
437 |
with open(results_file_path, "w") as f:
|
438 |
json.dump(results_dict, f, indent=4)
|
439 |
|
440 |
+
|
441 |
+
|
442 |
+
|
443 |
# Upload the results file
|
444 |
API.upload_file(
|
445 |
path_or_fileobj=results_file_path,
|
|
|
449 |
commit_message=f"Add results for {model}"
|
450 |
)
|
451 |
|
452 |
+
# Remove the local results file
|
453 |
os.remove(results_file_path)
|
454 |
|
455 |
return styled_message("Your model has been evaluated and the results are now on the leaderboard!")
|