Omartificial-Intelligence-Space commited on
Commit
561f24a
·
verified ·
1 Parent(s): 08f6cbe

update populate

Browse files
Files changed (1) hide show
  1. src/populate.py +6 -5
src/populate.py CHANGED
@@ -1,11 +1,9 @@
1
- # src/populate.py
2
-
3
  import os
4
  import pandas as pd
5
  import json
6
 
7
  from src.display.utils import COLUMNS, EVAL_COLS, Tasks
8
- from src.envs import EVAL_RESULTS_PATH # Removed FIXED_QUESTIONS_FILE import
9
 
10
  def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_cols):
11
  # Initialize an empty DataFrame
@@ -22,7 +20,6 @@ def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_co
22
  for file in result_files:
23
  with open(file, 'r') as f:
24
  data = json.load(f)
25
- # Flatten the JSON structure if needed
26
  flattened_data = {}
27
  flattened_data.update(data.get('config', {}))
28
  flattened_data.update(data.get('results', {}))
@@ -35,6 +32,10 @@ def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_co
35
  if col not in df.columns:
36
  df[col] = None
37
 
 
 
 
 
38
  # Sort by 'average' column if it exists
39
  if 'average' in df.columns:
40
  df = df.sort_values(by=['average'], ascending=False)
@@ -66,4 +67,4 @@ def get_evaluation_queue_df(eval_requests_path, eval_cols):
66
  running_df = df[df['status'] == 'running']
67
  pending_df = df[df['status'] == 'pending']
68
 
69
- return finished_df, running_df, pending_df
 
 
 
1
  import os
2
  import pandas as pd
3
  import json
4
 
5
  from src.display.utils import COLUMNS, EVAL_COLS, Tasks
6
+ from src.envs import EVAL_RESULTS_PATH
7
 
8
  def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_cols):
9
  # Initialize an empty DataFrame
 
20
  for file in result_files:
21
  with open(file, 'r') as f:
22
  data = json.load(f)
 
23
  flattened_data = {}
24
  flattened_data.update(data.get('config', {}))
25
  flattened_data.update(data.get('results', {}))
 
32
  if col not in df.columns:
33
  df[col] = None
34
 
35
+ # Convert 'average' column to float and handle errors
36
+ if 'average' in df.columns:
37
+ df['average'] = pd.to_numeric(df['average'], errors='coerce')
38
+
39
  # Sort by 'average' column if it exists
40
  if 'average' in df.columns:
41
  df = df.sort_values(by=['average'], ascending=False)
 
67
  running_df = df[df['status'] == 'running']
68
  pending_df = df[df['status'] == 'pending']
69
 
70
+ return finished_df, running_df, pending_df