Omartificial-Intelligence-Space commited on
Commit
1dc1a26
·
verified ·
1 Parent(s): 402ebfa

update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -9
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import gradio as gr
2
  from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
@@ -24,7 +26,6 @@ from src.display.utils import (
24
  Precision
25
  )
26
 
27
-
28
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
29
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
30
  from src.submission.submit import add_new_eval
@@ -50,6 +51,8 @@ except Exception:
50
 
51
 
52
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
 
 
53
 
54
  (
55
  finished_eval_queue_df,
@@ -67,11 +70,19 @@ with demo:
67
  if LEADERBOARD_DF.empty:
68
  gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
69
  else:
 
 
 
 
 
 
 
 
70
  leaderboard = Leaderboard(
71
  value=LEADERBOARD_DF,
72
  datatype=[col.type for col in COLUMNS],
73
  select_columns=SelectColumns(
74
- default_selection=[col.name for col in COLUMNS if col.displayed_by_default],
75
  cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
76
  label="Select Columns to Display:",
77
  ),
@@ -116,11 +127,12 @@ with demo:
116
  value=None,
117
  interactive=True,
118
  )
119
- num_examples_input = gr.Number(
120
- label="Number of Examples per Subject (e.g., 10)",
121
- value=10,
122
- precision=0
123
- )
 
124
 
125
  with gr.Column():
126
  precision = gr.Dropdown(
@@ -150,7 +162,7 @@ with demo:
150
  precision,
151
  weight_type,
152
  model_type,
153
- num_examples_input
154
  ],
155
  submission_result,
156
  )
@@ -168,4 +180,4 @@ with demo:
168
  scheduler = BackgroundScheduler()
169
  scheduler.add_job(restart_space, "interval", seconds=1800)
170
  scheduler.start()
171
- demo.queue(default_concurrency_limit=40).launch()
 
1
+ # app.py
2
+
3
  import gradio as gr
4
  from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
5
  import pandas as pd
 
26
  Precision
27
  )
28
 
 
29
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
  from src.submission.submit import add_new_eval
 
51
 
52
 
53
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
54
+ print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape) # Debug
55
+ print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist()) # Debug
56
 
57
  (
58
  finished_eval_queue_df,
 
70
  if LEADERBOARD_DF.empty:
71
  gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
72
  else:
73
+ default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
74
+ print("Default Selection before ensuring 'model':", default_selection) # Debug
75
+
76
+ # Ensure "model" is included
77
+ if "model" not in default_selection:
78
+ default_selection.insert(0, "model")
79
+ print("Default Selection after ensuring 'model':", default_selection) # Debug
80
+
81
  leaderboard = Leaderboard(
82
  value=LEADERBOARD_DF,
83
  datatype=[col.type for col in COLUMNS],
84
  select_columns=SelectColumns(
85
+ default_selection=default_selection,
86
  cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
87
  label="Select Columns to Display:",
88
  ),
 
127
  value=None,
128
  interactive=True,
129
  )
130
+ # Removed num_examples_input since we're using a fixed number
131
+ # num_examples_input = gr.Number(
132
+ # label="Number of Examples per Subject (e.g., 10)",
133
+ # value=10,
134
+ # precision=0
135
+ # )
136
 
137
  with gr.Column():
138
  precision = gr.Dropdown(
 
162
  precision,
163
  weight_type,
164
  model_type,
165
+ # num_examples_input # Removed
166
  ],
167
  submission_result,
168
  )
 
180
  scheduler = BackgroundScheduler()
181
  scheduler.add_job(restart_space, "interval", seconds=1800)
182
  scheduler.start()
183
+ demo.queue(default_concurrency_limit=40).launch()