File size: 7,119 Bytes
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14258b4
aa37927
 
 
 
 
 
 
 
 
 
 
 
14258b4
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04438ea
 
 
14258b4
04438ea
aa37927
 
14258b4
aa37927
14258b4
 
aa37927
 
14258b4
 
aa37927
14258b4
 
aa37927
14258b4
aa37927
 
 
 
 
 
14258b4
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
14258b4
 
 
 
 
aa37927
 
 
 
 
 
 
 
 
14258b4
aa37927
04438ea
 
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
42390ad
 
 
 
 
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14258b4
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14258b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    COLUMNS,  # Added this line
    AutoEvalColumn,
    ModelType,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialization
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        # Instead of raising an error, display an empty leaderboard with a message
        print("Leaderboard DataFrame is empty. No models have been evaluated yet.")
        # Create an empty DataFrame with the necessary columns
        dataframe = pd.DataFrame(columns=[c.name for c in COLUMNS])
        # Optionally, you can add a message to the interface to inform users
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in COLUMNS],
        select_columns=SelectColumns(
            default_selection=[c.name for c in COLUMNS if c.displayed_by_default],
            cant_deselect=[c.name for c in COLUMNS if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[c.name for c in COLUMNS if c.name in ["model", "license"]],
        hide_columns=[c.name for c in COLUMNS if c.hidden],
        filter_columns=[
            ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
            ColumnFilter("precision", type="checkboxgroup", label="Precision"),
            ColumnFilter(
                "params",
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                "still_on_hub", type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            if LEADERBOARD_DF.empty:
                gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
            else:
                leaderboard = init_leaderboard(LEADERBOARD_DF)
                leaderboard.render()  # Ensure the leaderboard is rendered

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                # Since the evaluation queues are empty, display a message
                with gr.Column():
                    gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )
                    num_examples_input = gr.Number(
                        label="Number of Examples per Subject (e.g., 10)",
                        value=10,
                        precision=0
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                    num_examples_input  # Included this line
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()