--- title: Whisper Webui emoji: ⚡ colorFrom: pink colorTo: purple sdk: gradio sdk_version: 3.3.1 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co./docs/hub/spaces-config-reference # Running Locally To run this program locally, first install Python 3.9+ and Git. Then install Pytorch 10.1+ and all the other dependencies: ``` pip install -r requirements.txt ``` Finally, run the full version (no audio length restrictions) of the app: ``` python app-full.py ``` # Docker To run it in Docker, first install Docker and optionally the NVIDIA Container Toolkit in order to use the GPU. Then check out this repository and build an image: ``` sudo docker build -t whisper-webui:1 . ``` You can then start the WebUI with GPU support like so: ``` sudo docker run -d --gpus=all -p 7860:7860 whisper-webui:1 ``` Leave out "--gpus=all" if you don't have access to a GPU with enough memory, and are fine with running it on the CPU only: ``` sudo docker run -d -p 7860:7860 whisper-webui:1 ``` ## Caching Note that the models themselves are currently not included in the Docker images, and will be downloaded on the demand. To avoid this, bind the directory /root/.cache/whisper to some directory on the host (for instance /home/administrator/.cache/whisper), where you can (optionally) prepopulate the directory with the different Whisper models. ``` sudo docker run -d --gpus=all -p 7860:7860 --mount type=bind,source=/home/administrator/.cache/whisper,target=/root/.cache/whisper whisper-webui:1 ```