|
from datetime import datetime |
|
import math |
|
from typing import Iterator |
|
import argparse |
|
|
|
from io import StringIO |
|
import os |
|
import pathlib |
|
import tempfile |
|
import zipfile |
|
|
|
import torch |
|
from src.modelCache import ModelCache |
|
from src.source import get_audio_source_collection |
|
from src.vadParallel import ParallelContext, ParallelTranscription |
|
|
|
|
|
import ffmpeg |
|
|
|
|
|
import gradio as gr |
|
|
|
from src.download import ExceededMaximumDuration, download_url |
|
from src.utils import slugify, write_srt, write_vtt |
|
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription |
|
from src.whisperContainer import WhisperContainer |
|
|
|
|
|
DEFAULT_INPUT_AUDIO_MAX_DURATION = 600 |
|
|
|
|
|
DELETE_UPLOADED_FILES = True |
|
|
|
|
|
MAX_FILE_PREFIX_LENGTH = 17 |
|
|
|
|
|
MAX_AUTO_CPU_CORES = 8 |
|
|
|
LANGUAGES = [ |
|
"English", "Chinese", "German", "Spanish", "Russian", "Korean", |
|
"French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan", |
|
"Dutch", "Arabic", "Swedish", "Italian", "Indonesian", "Hindi", |
|
"Finnish", "Vietnamese", "Hebrew", "Ukrainian", "Greek", "Malay", |
|
"Czech", "Romanian", "Danish", "Hungarian", "Tamil", "Norwegian", |
|
"Thai", "Urdu", "Croatian", "Bulgarian", "Lithuanian", "Latin", |
|
"Maori", "Malayalam", "Welsh", "Slovak", "Telugu", "Persian", |
|
"Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian", |
|
"Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic", |
|
"Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian", |
|
"Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer", |
|
"Shona", "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian", |
|
"Belarusian", "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish", |
|
"Lao", "Uzbek", "Faroese", "Haitian Creole", "Pashto", "Turkmen", |
|
"Nynorsk", "Maltese", "Sanskrit", "Luxembourgish", "Myanmar", "Tibetan", |
|
"Tagalog", "Malagasy", "Assamese", "Tatar", "Hawaiian", "Lingala", |
|
"Hausa", "Bashkir", "Javanese", "Sundanese" |
|
] |
|
|
|
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2"] |
|
|
|
class WhisperTranscriber: |
|
def __init__(self, input_audio_max_duration: float = DEFAULT_INPUT_AUDIO_MAX_DURATION, vad_process_timeout: float = None, vad_cpu_cores: int = 1, delete_uploaded_files: bool = DELETE_UPLOADED_FILES): |
|
self.model_cache = ModelCache() |
|
self.parallel_device_list = None |
|
self.gpu_parallel_context = None |
|
self.cpu_parallel_context = None |
|
self.vad_process_timeout = vad_process_timeout |
|
self.vad_cpu_cores = vad_cpu_cores |
|
|
|
self.vad_model = None |
|
self.inputAudioMaxDuration = input_audio_max_duration |
|
self.deleteUploadedFiles = delete_uploaded_files |
|
|
|
def set_parallel_devices(self, vad_parallel_devices: str): |
|
self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None |
|
|
|
def set_auto_parallel(self, auto_parallel: bool): |
|
if auto_parallel: |
|
if torch.cuda.is_available(): |
|
self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())] |
|
|
|
self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES) |
|
print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.") |
|
|
|
def transcribe_webui(self, modelName, languageName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow): |
|
try: |
|
sources = self.__get_source(urlData, multipleFiles, microphoneData) |
|
|
|
try: |
|
selectedLanguage = languageName.lower() if len(languageName) > 0 else None |
|
selectedModel = modelName if modelName is not None else "base" |
|
|
|
model = WhisperContainer(model_name=selectedModel, cache=self.model_cache) |
|
|
|
|
|
download = [] |
|
zip_file_lookup = {} |
|
text = "" |
|
vtt = "" |
|
|
|
|
|
downloadDirectory = tempfile.mkdtemp() |
|
source_index = 0 |
|
|
|
|
|
for source in sources: |
|
source_prefix = "" |
|
|
|
if (len(sources) > 1): |
|
|
|
source_index += 1 |
|
source_prefix = str(source_index).zfill(2) + "_" |
|
print("Transcribing ", source.source_path) |
|
|
|
|
|
result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow) |
|
filePrefix = slugify(source_prefix + source.get_short_name(), allow_unicode=True) |
|
|
|
source_download, source_text, source_vtt = self.write_result(result, filePrefix, downloadDirectory) |
|
|
|
if len(sources) > 1: |
|
|
|
if (len(source_text) > 0): |
|
source_text += os.linesep + os.linesep |
|
if (len(source_vtt) > 0): |
|
source_vtt += os.linesep + os.linesep |
|
|
|
|
|
source_text = source.get_full_name() + ":" + os.linesep + source_text |
|
source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt |
|
|
|
|
|
download.extend(source_download) |
|
text += source_text |
|
vtt += source_vtt |
|
|
|
if (len(sources) > 1): |
|
|
|
zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True) |
|
|
|
|
|
for source_download_file in source_download: |
|
|
|
filePostfix = os.path.basename(source_download_file).split("-")[-1] |
|
zip_file_name = zipFilePrefix + "-" + filePostfix |
|
zip_file_lookup[source_download_file] = zip_file_name |
|
|
|
|
|
if len(sources) > 1: |
|
downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip") |
|
|
|
with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip: |
|
for download_file in download: |
|
|
|
zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file)) |
|
zip.write(download_file, arcname=zip_file_name) |
|
|
|
download.insert(0, downloadAllPath) |
|
|
|
return download, text, vtt |
|
|
|
finally: |
|
|
|
if self.deleteUploadedFiles: |
|
for source in sources: |
|
print("Deleting source file " + source.source_path) |
|
|
|
try: |
|
os.remove(source.source_path) |
|
except Exception as e: |
|
|
|
print("Error deleting source file " + source.source_path + ": " + str(e)) |
|
|
|
except ExceededMaximumDuration as e: |
|
return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]" |
|
|
|
def transcribe_file(self, model: WhisperContainer, audio_path: str, language: str, task: str = None, vad: str = None, |
|
vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, **decodeOptions: dict): |
|
|
|
initial_prompt = decodeOptions.pop('initial_prompt', None) |
|
|
|
if ('task' in decodeOptions): |
|
task = decodeOptions.pop('task') |
|
|
|
|
|
whisperCallable = model.create_callback(language, task, initial_prompt, **decodeOptions) |
|
|
|
|
|
if (vad == 'silero-vad'): |
|
|
|
process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow) |
|
result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps) |
|
elif (vad == 'silero-vad-skip-gaps'): |
|
|
|
skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow) |
|
result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps) |
|
elif (vad == 'silero-vad-expand-into-gaps'): |
|
|
|
expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow) |
|
result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps) |
|
elif (vad == 'periodic-vad'): |
|
|
|
|
|
periodic_vad = VadPeriodicTranscription() |
|
period_config = PeriodicTranscriptionConfig(periodic_duration=vadMaxMergeSize, max_prompt_window=vadPromptWindow) |
|
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config) |
|
|
|
else: |
|
if (self._has_parallel_devices()): |
|
|
|
periodic_vad = VadPeriodicTranscription() |
|
period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1) |
|
|
|
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config) |
|
else: |
|
|
|
result = whisperCallable.invoke(audio_path, 0, None, None) |
|
|
|
return result |
|
|
|
def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig): |
|
if (not self._has_parallel_devices()): |
|
|
|
return vadModel.transcribe(audio_path, whisperCallable, vadConfig) |
|
|
|
gpu_devices = self.parallel_device_list |
|
|
|
if (gpu_devices is None or len(gpu_devices) == 0): |
|
|
|
gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)] |
|
|
|
|
|
if (self.gpu_parallel_context is None): |
|
|
|
self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout) |
|
|
|
if (self.cpu_parallel_context is None): |
|
self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout) |
|
|
|
parallel_vad = ParallelTranscription() |
|
return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable, |
|
config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices, |
|
cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context) |
|
|
|
def _has_parallel_devices(self): |
|
return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1 |
|
|
|
def _concat_prompt(self, prompt1, prompt2): |
|
if (prompt1 is None): |
|
return prompt2 |
|
elif (prompt2 is None): |
|
return prompt1 |
|
else: |
|
return prompt1 + " " + prompt2 |
|
|
|
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1): |
|
|
|
if (self.vad_model is None): |
|
self.vad_model = VadSileroTranscription() |
|
|
|
config = TranscriptionConfig(non_speech_strategy = non_speech_strategy, |
|
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize, |
|
segment_padding_left=vadPadding, segment_padding_right=vadPadding, |
|
max_prompt_window=vadPromptWindow) |
|
|
|
return config |
|
|
|
def write_result(self, result: dict, source_name: str, output_dir: str): |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
text = result["text"] |
|
language = result["language"] |
|
languageMaxLineWidth = self.__get_max_line_width(language) |
|
|
|
print("Max line width " + str(languageMaxLineWidth)) |
|
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth) |
|
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth) |
|
|
|
output_files = [] |
|
output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt")); |
|
output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt")); |
|
output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt")); |
|
|
|
return output_files, text, vtt |
|
|
|
def clear_cache(self): |
|
self.model_cache.clear() |
|
self.vad_model = None |
|
|
|
def __get_source(self, urlData, multipleFiles, microphoneData): |
|
return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration) |
|
|
|
def __get_max_line_width(self, language: str) -> int: |
|
if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]): |
|
|
|
return 40 |
|
else: |
|
|
|
|
|
return 80 |
|
|
|
def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int) -> str: |
|
segmentStream = StringIO() |
|
|
|
if format == 'vtt': |
|
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
elif format == 'srt': |
|
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
else: |
|
raise Exception("Unknown format " + format) |
|
|
|
segmentStream.seek(0) |
|
return segmentStream.read() |
|
|
|
def __create_file(self, text: str, directory: str, fileName: str) -> str: |
|
|
|
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file: |
|
file.write(text) |
|
|
|
return file.name |
|
|
|
def close(self): |
|
print("Closing parallel contexts") |
|
self.clear_cache() |
|
|
|
if (self.gpu_parallel_context is not None): |
|
self.gpu_parallel_context.close() |
|
if (self.cpu_parallel_context is not None): |
|
self.cpu_parallel_context.close() |
|
|
|
|
|
def create_ui(input_audio_max_duration, share=False, server_name: str = None, server_port: int = 7860, |
|
default_model_name: str = "medium", default_vad: str = None, vad_parallel_devices: str = None, vad_process_timeout: float = None, vad_cpu_cores: int = 1, auto_parallel: bool = False): |
|
ui = WhisperTranscriber(input_audio_max_duration, vad_process_timeout, vad_cpu_cores) |
|
|
|
|
|
ui.set_parallel_devices(vad_parallel_devices) |
|
ui.set_auto_parallel(auto_parallel) |
|
|
|
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse " |
|
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition " |
|
ui_description += " as well as speech translation and language identification. " |
|
|
|
ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option." |
|
|
|
if input_audio_max_duration > 0: |
|
ui_description += "\n\n" + "Max audio file length: " + str(input_audio_max_duration) + " s" |
|
|
|
ui_article = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)" |
|
|
|
demo = gr.Interface(fn=ui.transcribe_webui, description=ui_description, article=ui_article, inputs=[ |
|
gr.Dropdown(choices=WHISPER_MODELS, value=default_model_name, label="Model"), |
|
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"), |
|
gr.Text(label="URL (YouTube, etc.)"), |
|
gr.File(label="Upload Files", file_count="multiple"), |
|
gr.Audio(source="microphone", type="filepath", label="Microphone Input"), |
|
gr.Dropdown(choices=["transcribe", "translate"], label="Task"), |
|
gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=default_vad, label="VAD"), |
|
gr.Number(label="VAD - Merge Window (s)", precision=0, value=5), |
|
gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=30), |
|
gr.Number(label="VAD - Padding (s)", precision=None, value=1), |
|
gr.Number(label="VAD - Prompt Window (s)", precision=None, value=3) |
|
], outputs=[ |
|
gr.File(label="Download"), |
|
gr.Text(label="Transcription"), |
|
gr.Text(label="Segments") |
|
]) |
|
|
|
demo.launch(share=share, server_name=server_name, server_port=server_port) |
|
|
|
|
|
ui.close() |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument("--input_audio_max_duration", type=int, default=DEFAULT_INPUT_AUDIO_MAX_DURATION, help="Maximum audio file length in seconds, or -1 for no limit.") |
|
parser.add_argument("--share", type=bool, default=False, help="True to share the app on HuggingFace.") |
|
parser.add_argument("--server_name", type=str, default=None, help="The host or IP to bind to. If None, bind to localhost.") |
|
parser.add_argument("--server_port", type=int, default=7860, help="The port to bind to.") |
|
parser.add_argument("--default_model_name", type=str, choices=WHISPER_MODELS, default="medium", help="The default model name.") |
|
parser.add_argument("--default_vad", type=str, default="silero-vad", help="The default VAD.") |
|
parser.add_argument("--vad_parallel_devices", type=str, default="", help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") |
|
parser.add_argument("--vad_cpu_cores", type=int, default=1, help="The number of CPU cores to use for VAD pre-processing.") |
|
parser.add_argument("--vad_process_timeout", type=float, default="1800", help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") |
|
parser.add_argument("--auto_parallel", type=bool, default=False, help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") |
|
|
|
args = parser.parse_args().__dict__ |
|
create_ui(**args) |