|
from typing import Iterator |
|
|
|
from io import StringIO |
|
import os |
|
import pathlib |
|
import tempfile |
|
|
|
|
|
import whisper |
|
import ffmpeg |
|
|
|
|
|
import gradio as gr |
|
from download import downloadUrl |
|
|
|
from utils import slugify, write_srt, write_vtt |
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_INPUT_AUDIO_MAX_DURATION = 600 |
|
|
|
LANGUAGES = [ |
|
"English", "Chinese", "German", "Spanish", "Russian", "Korean", |
|
"French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan", |
|
"Dutch", "Arabic", "Swedish", "Italian", "Indonesian", "Hindi", |
|
"Finnish", "Vietnamese", "Hebrew", "Ukrainian", "Greek", "Malay", |
|
"Czech", "Romanian", "Danish", "Hungarian", "Tamil", "Norwegian", |
|
"Thai", "Urdu", "Croatian", "Bulgarian", "Lithuanian", "Latin", |
|
"Maori", "Malayalam", "Welsh", "Slovak", "Telugu", "Persian", |
|
"Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian", |
|
"Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic", |
|
"Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian", |
|
"Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer", |
|
"Shona", "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian", |
|
"Belarusian", "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish", |
|
"Lao", "Uzbek", "Faroese", "Haitian Creole", "Pashto", "Turkmen", |
|
"Nynorsk", "Maltese", "Sanskrit", "Luxembourgish", "Myanmar", "Tibetan", |
|
"Tagalog", "Malagasy", "Assamese", "Tatar", "Hawaiian", "Lingala", |
|
"Hausa", "Bashkir", "Javanese", "Sundanese" |
|
] |
|
|
|
model_cache = dict() |
|
|
|
class UI: |
|
def __init__(self, inputAudioMaxDuration): |
|
self.inputAudioMaxDuration = inputAudioMaxDuration |
|
|
|
def transcribeFile(self, modelName, languageName, urlData, uploadFile, microphoneData, task): |
|
source, sourceName = getSource(urlData, uploadFile, microphoneData) |
|
|
|
selectedLanguage = languageName.lower() if len(languageName) > 0 else None |
|
selectedModel = modelName if modelName is not None else "base" |
|
|
|
if self.inputAudioMaxDuration > 0: |
|
|
|
audioDuration = ffmpeg.probe(source)["format"]["duration"] |
|
|
|
if float(audioDuration) > self.inputAudioMaxDuration: |
|
return ("[ERROR]: Maximum audio file length is " + str(self.inputAudioMaxDuration) + "s, file was " + str(audioDuration) + "s"), "[ERROR]" |
|
|
|
model = model_cache.get(selectedModel, None) |
|
|
|
if not model: |
|
model = whisper.load_model(selectedModel) |
|
model_cache[selectedModel] = model |
|
|
|
|
|
result = model.transcribe(source, language=selectedLanguage, task=task) |
|
|
|
text = result["text"] |
|
vtt = getSubs(result["segments"], "vtt") |
|
srt = getSubs(result["segments"], "srt") |
|
|
|
|
|
downloadDirectory = tempfile.mkdtemp() |
|
filePrefix = slugify(sourceName, allow_unicode=True) |
|
|
|
download = [] |
|
download.append(createFile(srt, downloadDirectory, filePrefix + "-subs.srt")); |
|
download.append(createFile(vtt, downloadDirectory, filePrefix + "-subs.vtt")); |
|
download.append(createFile(text, downloadDirectory, filePrefix + "-transcript.txt")); |
|
|
|
return download, text, vtt |
|
|
|
def getSource(urlData, uploadFile, microphoneData): |
|
if urlData: |
|
|
|
source = downloadUrl(urlData) |
|
else: |
|
|
|
source = uploadFile if uploadFile is not None else microphoneData |
|
|
|
file_path = pathlib.Path(source) |
|
sourceName = file_path.stem[:18] + file_path.suffix |
|
|
|
return source, sourceName |
|
|
|
def createFile(text: str, directory: str, fileName: str) -> str: |
|
|
|
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file: |
|
file.write(text) |
|
|
|
return file.name |
|
|
|
def getSubs(segments: Iterator[dict], format: str) -> str: |
|
segmentStream = StringIO() |
|
|
|
if format == 'vtt': |
|
write_vtt(segments, file=segmentStream) |
|
elif format == 'srt': |
|
write_srt(segments, file=segmentStream) |
|
else: |
|
raise Exception("Unknown format " + format) |
|
|
|
segmentStream.seek(0) |
|
return segmentStream.read() |
|
|
|
|
|
def createUi(inputAudioMaxDuration, share=False): |
|
ui = UI(inputAudioMaxDuration) |
|
|
|
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse " |
|
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition " |
|
ui_description += " as well as speech translation and language identification. " |
|
|
|
if inputAudioMaxDuration > 0: |
|
ui_description += "\n\n" + "Max audio file length: " + str(inputAudioMaxDuration) + " s" |
|
|
|
demo = gr.Interface(fn=ui.transcribeFile, description=ui_description, inputs=[ |
|
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"), |
|
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"), |
|
gr.Text(label="URL (YouTube, etc.)"), |
|
gr.Audio(source="upload", type="filepath", label="Upload Audio"), |
|
gr.Audio(source="microphone", type="filepath", label="Microphone Input"), |
|
gr.Dropdown(choices=["transcribe", "translate"], label="Task"), |
|
], outputs=[ |
|
gr.File(label="Download"), |
|
gr.Text(label="Transcription"), |
|
gr.Text(label="Segments") |
|
]) |
|
|
|
demo.launch(share=share) |
|
|
|
if __name__ == '__main__': |
|
createUi(DEFAULT_INPUT_AUDIO_MAX_DURATION) |