Eddycrack864 commited on
Commit
62998a2
1 Parent(s): 152f4bc

Delete separate.py

Browse files
Files changed (1) hide show
  1. separate.py +0 -1459
separate.py DELETED
@@ -1,1459 +0,0 @@
1
- from __future__ import annotations
2
- from typing import TYPE_CHECKING
3
- from demucs.apply import apply_model, demucs_segments
4
- from demucs.hdemucs import HDemucs
5
- from demucs.model_v2 import auto_load_demucs_model_v2
6
- from demucs.pretrained import get_model as _gm
7
- from demucs.utils import apply_model_v1
8
- from demucs.utils import apply_model_v2
9
- from lib_v5.tfc_tdf_v3 import TFC_TDF_net, STFT
10
- from lib_v5 import spec_utils
11
- from lib_v5.vr_network import nets
12
- from lib_v5.vr_network import nets_new
13
- from lib_v5.vr_network.model_param_init import ModelParameters
14
- from pathlib import Path
15
- from gui_data.constants import *
16
- from gui_data.error_handling import *
17
- from scipy import signal
18
- import audioread
19
- import gzip
20
- import librosa
21
- import math
22
- import numpy as np
23
- import onnxruntime as ort
24
- import os
25
- import torch
26
- import warnings
27
- import pydub
28
- import soundfile as sf
29
- import lib_v5.mdxnet as MdxnetSet
30
- import math
31
- #import random
32
- from onnx import load
33
- from onnx2pytorch import ConvertModel
34
- import gc
35
-
36
- if TYPE_CHECKING:
37
- from UVR import ModelData
38
-
39
- # if not is_macos:
40
- # import torch_directml
41
-
42
- mps_available = torch.backends.mps.is_available() if is_macos else False
43
- cuda_available = torch.cuda.is_available()
44
-
45
- # def get_gpu_info():
46
- # directml_device, directml_available = DIRECTML_DEVICE, False
47
-
48
- # if not is_macos:
49
- # directml_available = torch_directml.is_available()
50
-
51
- # if directml_available:
52
- # directml_device = str(torch_directml.device()).partition(":")[0]
53
-
54
- # return directml_device, directml_available
55
-
56
- # DIRECTML_DEVICE, directml_available = get_gpu_info()
57
-
58
- def clear_gpu_cache():
59
- gc.collect()
60
- if is_macos:
61
- torch.mps.empty_cache()
62
- else:
63
- torch.cuda.empty_cache()
64
-
65
- warnings.filterwarnings("ignore")
66
- cpu = torch.device('cpu')
67
-
68
- class SeperateAttributes:
69
- def __init__(self, model_data: ModelData,
70
- process_data: dict,
71
- main_model_primary_stem_4_stem=None,
72
- main_process_method=None,
73
- is_return_dual=True,
74
- main_model_primary=None,
75
- vocal_stem_path=None,
76
- master_inst_source=None,
77
- master_vocal_source=None):
78
-
79
- self.list_all_models: list
80
- self.process_data = process_data
81
- self.progress_value = 0
82
- self.set_progress_bar = process_data['set_progress_bar']
83
- self.write_to_console = process_data['write_to_console']
84
- if vocal_stem_path:
85
- self.audio_file, self.audio_file_base = vocal_stem_path
86
- self.audio_file_base_voc_split = lambda stem, split:os.path.join(self.export_path, f'{self.audio_file_base.replace("_(Vocals)", "")}_({stem}_{split}).wav')
87
- else:
88
- self.audio_file = process_data['audio_file']
89
- self.audio_file_base = process_data['audio_file_base']
90
- self.audio_file_base_voc_split = None
91
- self.export_path = process_data['export_path']
92
- self.cached_source_callback = process_data['cached_source_callback']
93
- self.cached_model_source_holder = process_data['cached_model_source_holder']
94
- self.is_4_stem_ensemble = process_data['is_4_stem_ensemble']
95
- self.list_all_models = process_data['list_all_models']
96
- self.process_iteration = process_data['process_iteration']
97
- self.is_return_dual = is_return_dual
98
- self.is_pitch_change = model_data.is_pitch_change
99
- self.semitone_shift = model_data.semitone_shift
100
- self.is_match_frequency_pitch = model_data.is_match_frequency_pitch
101
- self.overlap = model_data.overlap
102
- self.overlap_mdx = model_data.overlap_mdx
103
- self.overlap_mdx23 = model_data.overlap_mdx23
104
- self.is_mdx_combine_stems = model_data.is_mdx_combine_stems
105
- self.is_mdx_c = model_data.is_mdx_c
106
- self.mdx_c_configs = model_data.mdx_c_configs
107
- self.mdxnet_stem_select = model_data.mdxnet_stem_select
108
- self.mixer_path = model_data.mixer_path
109
- self.model_samplerate = model_data.model_samplerate
110
- self.model_capacity = model_data.model_capacity
111
- self.is_vr_51_model = model_data.is_vr_51_model
112
- self.is_pre_proc_model = model_data.is_pre_proc_model
113
- self.is_secondary_model_activated = model_data.is_secondary_model_activated if not self.is_pre_proc_model else False
114
- self.is_secondary_model = model_data.is_secondary_model if not self.is_pre_proc_model else True
115
- self.process_method = model_data.process_method
116
- self.model_path = model_data.model_path
117
- self.model_name = model_data.model_name
118
- self.model_basename = model_data.model_basename
119
- self.wav_type_set = model_data.wav_type_set
120
- self.mp3_bit_set = model_data.mp3_bit_set
121
- self.save_format = model_data.save_format
122
- self.is_gpu_conversion = model_data.is_gpu_conversion
123
- self.is_normalization = model_data.is_normalization
124
- self.is_primary_stem_only = model_data.is_primary_stem_only if not self.is_secondary_model else model_data.is_primary_model_primary_stem_only
125
- self.is_secondary_stem_only = model_data.is_secondary_stem_only if not self.is_secondary_model else model_data.is_primary_model_secondary_stem_only
126
- self.is_ensemble_mode = model_data.is_ensemble_mode
127
- self.secondary_model = model_data.secondary_model #
128
- self.primary_model_primary_stem = model_data.primary_model_primary_stem
129
- self.primary_stem_native = model_data.primary_stem_native
130
- self.primary_stem = model_data.primary_stem #
131
- self.secondary_stem = model_data.secondary_stem #
132
- self.is_invert_spec = model_data.is_invert_spec #
133
- self.is_deverb_vocals = model_data.is_deverb_vocals
134
- self.is_mixer_mode = model_data.is_mixer_mode #
135
- self.secondary_model_scale = model_data.secondary_model_scale #
136
- self.is_demucs_pre_proc_model_inst_mix = model_data.is_demucs_pre_proc_model_inst_mix #
137
- self.primary_source_map = {}
138
- self.secondary_source_map = {}
139
- self.primary_source = None
140
- self.secondary_source = None
141
- self.secondary_source_primary = None
142
- self.secondary_source_secondary = None
143
- self.main_model_primary_stem_4_stem = main_model_primary_stem_4_stem
144
- self.main_model_primary = main_model_primary
145
- self.ensemble_primary_stem = model_data.ensemble_primary_stem
146
- self.is_multi_stem_ensemble = model_data.is_multi_stem_ensemble
147
- self.is_other_gpu = False
148
- self.is_deverb = True
149
- self.DENOISER_MODEL = model_data.DENOISER_MODEL
150
- self.DEVERBER_MODEL = model_data.DEVERBER_MODEL
151
- self.is_source_swap = False
152
- self.vocal_split_model = model_data.vocal_split_model
153
- self.is_vocal_split_model = model_data.is_vocal_split_model
154
- self.master_vocal_path = None
155
- self.set_master_inst_source = None
156
- self.master_inst_source = master_inst_source
157
- self.master_vocal_source = master_vocal_source
158
- self.is_save_inst_vocal_splitter = isinstance(master_inst_source, np.ndarray) and model_data.is_save_inst_vocal_splitter
159
- self.is_inst_only_voc_splitter = model_data.is_inst_only_voc_splitter
160
- self.is_karaoke = model_data.is_karaoke
161
- self.is_bv_model = model_data.is_bv_model
162
- self.is_bv_model_rebalenced = model_data.bv_model_rebalance and self.is_vocal_split_model
163
- self.is_sec_bv_rebalance = model_data.is_sec_bv_rebalance
164
- self.stem_path_init = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
165
- self.deverb_vocal_opt = model_data.deverb_vocal_opt
166
- self.is_save_vocal_only = model_data.is_save_vocal_only
167
- self.device = cpu
168
- self.run_type = ['CPUExecutionProvider']
169
- self.is_opencl = False
170
- self.device_set = model_data.device_set
171
- self.is_use_opencl = model_data.is_use_opencl
172
-
173
- if self.is_inst_only_voc_splitter or self.is_sec_bv_rebalance:
174
- self.is_primary_stem_only = False
175
- self.is_secondary_stem_only = False
176
-
177
- if main_model_primary and self.is_multi_stem_ensemble:
178
- self.primary_stem, self.secondary_stem = main_model_primary, secondary_stem(main_model_primary)
179
-
180
- if self.is_gpu_conversion >= 0:
181
- if mps_available:
182
- self.device, self.is_other_gpu = 'mps', True
183
- else:
184
- device_prefix = None
185
- if self.device_set != DEFAULT:
186
- device_prefix = CUDA_DEVICE#DIRECTML_DEVICE if self.is_use_opencl and directml_available else CUDA_DEVICE
187
-
188
- # if directml_available and self.is_use_opencl:
189
- # self.device = torch_directml.device() if not device_prefix else f'{device_prefix}:{self.device_set}'
190
- # self.is_other_gpu = True
191
- if cuda_available:# and not self.is_use_opencl:
192
- self.device = CUDA_DEVICE if not device_prefix else f'{device_prefix}:{self.device_set}'
193
- self.run_type = ['CUDAExecutionProvider']
194
-
195
- if model_data.process_method == MDX_ARCH_TYPE:
196
- self.is_mdx_ckpt = model_data.is_mdx_ckpt
197
- self.primary_model_name, self.primary_sources = self.cached_source_callback(MDX_ARCH_TYPE, model_name=self.model_basename)
198
- self.is_denoise = model_data.is_denoise#
199
- self.is_denoise_model = model_data.is_denoise_model#
200
- self.is_mdx_c_seg_def = model_data.is_mdx_c_seg_def#
201
- self.mdx_batch_size = model_data.mdx_batch_size
202
- self.compensate = model_data.compensate
203
- self.mdx_segment_size = model_data.mdx_segment_size
204
-
205
- if self.is_mdx_c:
206
- if not self.is_4_stem_ensemble:
207
- self.primary_stem = model_data.ensemble_primary_stem if process_data['is_ensemble_master'] else model_data.primary_stem
208
- self.secondary_stem = model_data.ensemble_secondary_stem if process_data['is_ensemble_master'] else model_data.secondary_stem
209
- else:
210
- self.dim_f, self.dim_t = model_data.mdx_dim_f_set, 2**model_data.mdx_dim_t_set
211
-
212
- self.check_label_secondary_stem_runs()
213
- self.n_fft = model_data.mdx_n_fft_scale_set
214
- self.chunks = model_data.chunks
215
- self.margin = model_data.margin
216
- self.adjust = 1
217
- self.dim_c = 4
218
- self.hop = 1024
219
-
220
- if model_data.process_method == DEMUCS_ARCH_TYPE:
221
- self.demucs_stems = model_data.demucs_stems if not main_process_method in [MDX_ARCH_TYPE, VR_ARCH_TYPE] else None
222
- self.secondary_model_4_stem = model_data.secondary_model_4_stem
223
- self.secondary_model_4_stem_scale = model_data.secondary_model_4_stem_scale
224
- self.is_chunk_demucs = model_data.is_chunk_demucs
225
- self.segment = model_data.segment
226
- self.demucs_version = model_data.demucs_version
227
- self.demucs_source_list = model_data.demucs_source_list
228
- self.demucs_source_map = model_data.demucs_source_map
229
- self.is_demucs_combine_stems = model_data.is_demucs_combine_stems
230
- self.demucs_stem_count = model_data.demucs_stem_count
231
- self.pre_proc_model = model_data.pre_proc_model
232
- self.device = cpu if self.is_other_gpu and not self.demucs_version in [DEMUCS_V3, DEMUCS_V4] else self.device
233
-
234
- self.primary_stem = model_data.ensemble_primary_stem if process_data['is_ensemble_master'] else model_data.primary_stem
235
- self.secondary_stem = model_data.ensemble_secondary_stem if process_data['is_ensemble_master'] else model_data.secondary_stem
236
-
237
- if (self.is_multi_stem_ensemble or self.is_4_stem_ensemble) and not self.is_secondary_model:
238
- self.is_return_dual = False
239
-
240
- if self.is_multi_stem_ensemble and main_model_primary:
241
- self.is_4_stem_ensemble = False
242
- if main_model_primary in self.demucs_source_map.keys():
243
- self.primary_stem = main_model_primary
244
- self.secondary_stem = secondary_stem(main_model_primary)
245
- elif secondary_stem(main_model_primary) in self.demucs_source_map.keys():
246
- self.primary_stem = secondary_stem(main_model_primary)
247
- self.secondary_stem = main_model_primary
248
-
249
- if self.is_secondary_model and not process_data['is_ensemble_master']:
250
- if not self.demucs_stem_count == 2 and model_data.primary_model_primary_stem == INST_STEM:
251
- self.primary_stem = VOCAL_STEM
252
- self.secondary_stem = INST_STEM
253
- else:
254
- self.primary_stem = model_data.primary_model_primary_stem
255
- self.secondary_stem = secondary_stem(self.primary_stem)
256
-
257
- self.shifts = model_data.shifts
258
- self.is_split_mode = model_data.is_split_mode if not self.demucs_version == DEMUCS_V4 else True
259
- self.primary_model_name, self.primary_sources = self.cached_source_callback(DEMUCS_ARCH_TYPE, model_name=self.model_basename)
260
-
261
- if model_data.process_method == VR_ARCH_TYPE:
262
- self.check_label_secondary_stem_runs()
263
- self.primary_model_name, self.primary_sources = self.cached_source_callback(VR_ARCH_TYPE, model_name=self.model_basename)
264
- self.mp = model_data.vr_model_param
265
- self.high_end_process = model_data.is_high_end_process
266
- self.is_tta = model_data.is_tta
267
- self.is_post_process = model_data.is_post_process
268
- self.is_gpu_conversion = model_data.is_gpu_conversion
269
- self.batch_size = model_data.batch_size
270
- self.window_size = model_data.window_size
271
- self.input_high_end_h = None
272
- self.input_high_end = None
273
- self.post_process_threshold = model_data.post_process_threshold
274
- self.aggressiveness = {'value': model_data.aggression_setting,
275
- 'split_bin': self.mp.param['band'][1]['crop_stop'],
276
- 'aggr_correction': self.mp.param.get('aggr_correction')}
277
-
278
- def check_label_secondary_stem_runs(self):
279
-
280
- # For ensemble master that's not a 4-stem ensemble, and not mdx_c
281
- if self.process_data['is_ensemble_master'] and not self.is_4_stem_ensemble and not self.is_mdx_c:
282
- if self.ensemble_primary_stem != self.primary_stem:
283
- self.is_primary_stem_only, self.is_secondary_stem_only = self.is_secondary_stem_only, self.is_primary_stem_only
284
-
285
- # For secondary models
286
- if self.is_pre_proc_model or self.is_secondary_model:
287
- self.is_primary_stem_only = False
288
- self.is_secondary_stem_only = False
289
-
290
- def start_inference_console_write(self):
291
- if self.is_secondary_model and not self.is_pre_proc_model and not self.is_vocal_split_model:
292
- self.write_to_console(INFERENCE_STEP_2_SEC(self.process_method, self.model_basename))
293
-
294
- if self.is_pre_proc_model:
295
- self.write_to_console(INFERENCE_STEP_2_PRE(self.process_method, self.model_basename))
296
-
297
- if self.is_vocal_split_model:
298
- self.write_to_console(INFERENCE_STEP_2_VOC_S(self.process_method, self.model_basename))
299
-
300
- def running_inference_console_write(self, is_no_write=False):
301
- self.write_to_console(DONE, base_text='') if not is_no_write else None
302
- self.set_progress_bar(0.05) if not is_no_write else None
303
-
304
- if self.is_secondary_model and not self.is_pre_proc_model and not self.is_vocal_split_model:
305
- self.write_to_console(INFERENCE_STEP_1_SEC)
306
- elif self.is_pre_proc_model:
307
- self.write_to_console(INFERENCE_STEP_1_PRE)
308
- elif self.is_vocal_split_model:
309
- self.write_to_console(INFERENCE_STEP_1_VOC_S)
310
- else:
311
- self.write_to_console(INFERENCE_STEP_1)
312
-
313
- def running_inference_progress_bar(self, length, is_match_mix=False):
314
- if not is_match_mix:
315
- self.progress_value += 1
316
-
317
- if (0.8/length*self.progress_value) >= 0.8:
318
- length = self.progress_value + 1
319
-
320
- self.set_progress_bar(0.1, (0.8/length*self.progress_value))
321
-
322
- def load_cached_sources(self):
323
-
324
- if self.is_secondary_model and not self.is_pre_proc_model:
325
- self.write_to_console(INFERENCE_STEP_2_SEC_CACHED_MODOEL(self.process_method, self.model_basename))
326
- elif self.is_pre_proc_model:
327
- self.write_to_console(INFERENCE_STEP_2_PRE_CACHED_MODOEL(self.process_method, self.model_basename))
328
- else:
329
- self.write_to_console(INFERENCE_STEP_2_PRIMARY_CACHED, "")
330
-
331
- def cache_source(self, secondary_sources):
332
-
333
- model_occurrences = self.list_all_models.count(self.model_basename)
334
-
335
- if not model_occurrences <= 1:
336
- if self.process_method == MDX_ARCH_TYPE:
337
- self.cached_model_source_holder(MDX_ARCH_TYPE, secondary_sources, self.model_basename)
338
-
339
- if self.process_method == VR_ARCH_TYPE:
340
- self.cached_model_source_holder(VR_ARCH_TYPE, secondary_sources, self.model_basename)
341
-
342
- if self.process_method == DEMUCS_ARCH_TYPE:
343
- self.cached_model_source_holder(DEMUCS_ARCH_TYPE, secondary_sources, self.model_basename)
344
-
345
- def process_vocal_split_chain(self, sources: dict):
346
-
347
- def is_valid_vocal_split_condition(master_vocal_source):
348
- """Checks if conditions for vocal split processing are met."""
349
- conditions = [
350
- isinstance(master_vocal_source, np.ndarray),
351
- self.vocal_split_model,
352
- not self.is_ensemble_mode,
353
- not self.is_karaoke,
354
- not self.is_bv_model
355
- ]
356
- return all(conditions)
357
-
358
- # Retrieve sources from the dictionary with default fallbacks
359
- master_inst_source = sources.get(INST_STEM, None)
360
- master_vocal_source = sources.get(VOCAL_STEM, None)
361
-
362
- # Process the vocal split chain if conditions are met
363
- if is_valid_vocal_split_condition(master_vocal_source):
364
- process_chain_model(
365
- self.vocal_split_model,
366
- self.process_data,
367
- vocal_stem_path=self.master_vocal_path,
368
- master_vocal_source=master_vocal_source,
369
- master_inst_source=master_inst_source
370
- )
371
-
372
- def process_secondary_stem(self, stem_source, secondary_model_source=None, model_scale=None):
373
- if not self.is_secondary_model:
374
- if self.is_secondary_model_activated and isinstance(secondary_model_source, np.ndarray):
375
- secondary_model_scale = model_scale if model_scale else self.secondary_model_scale
376
- stem_source = spec_utils.average_dual_sources(stem_source, secondary_model_source, secondary_model_scale)
377
-
378
- return stem_source
379
-
380
- def final_process(self, stem_path, source, secondary_source, stem_name, samplerate):
381
- source = self.process_secondary_stem(source, secondary_source)
382
- self.write_audio(stem_path, source, samplerate, stem_name=stem_name)
383
-
384
- return {stem_name: source}
385
-
386
- def write_audio(self, stem_path: str, stem_source, samplerate, stem_name=None):
387
-
388
- def save_audio_file(path, source):
389
- source = spec_utils.normalize(source, self.is_normalization)
390
- sf.write(path, source, samplerate, subtype=self.wav_type_set)
391
-
392
- if is_not_ensemble:
393
- save_format(path, self.save_format, self.mp3_bit_set)
394
-
395
- def save_voc_split_instrumental(stem_name, stem_source, is_inst_invert=False):
396
- inst_stem_name = "Instrumental (With Lead Vocals)" if stem_name == LEAD_VOCAL_STEM else "Instrumental (With Backing Vocals)"
397
- inst_stem_path_name = LEAD_VOCAL_STEM_I if stem_name == LEAD_VOCAL_STEM else BV_VOCAL_STEM_I
398
- inst_stem_path = self.audio_file_base_voc_split(INST_STEM, inst_stem_path_name)
399
- stem_source = -stem_source if is_inst_invert else stem_source
400
- inst_stem_source = spec_utils.combine_arrarys([self.master_inst_source, stem_source], is_swap=True)
401
- save_with_message(inst_stem_path, inst_stem_name, inst_stem_source)
402
-
403
- def save_voc_split_vocal(stem_name, stem_source):
404
- voc_split_stem_name = LEAD_VOCAL_STEM_LABEL if stem_name == LEAD_VOCAL_STEM else BV_VOCAL_STEM_LABEL
405
- voc_split_stem_path = self.audio_file_base_voc_split(VOCAL_STEM, stem_name)
406
- save_with_message(voc_split_stem_path, voc_split_stem_name, stem_source)
407
-
408
- def save_with_message(stem_path, stem_name, stem_source):
409
- is_deverb = self.is_deverb_vocals and (
410
- self.deverb_vocal_opt == stem_name or
411
- (self.deverb_vocal_opt == 'ALL' and
412
- (stem_name == VOCAL_STEM or stem_name == LEAD_VOCAL_STEM_LABEL or stem_name == BV_VOCAL_STEM_LABEL)))
413
-
414
- self.write_to_console(f'{SAVING_STEM[0]}{stem_name}{SAVING_STEM[1]}')
415
-
416
- if is_deverb and is_not_ensemble:
417
- deverb_vocals(stem_path, stem_source)
418
-
419
- save_audio_file(stem_path, stem_source)
420
- self.write_to_console(DONE, base_text='')
421
-
422
- def deverb_vocals(stem_path:str, stem_source):
423
- self.write_to_console(INFERENCE_STEP_DEVERBING, base_text='')
424
- stem_source_deverbed, stem_source_2 = vr_denoiser(stem_source, self.device, is_deverber=True, model_path=self.DEVERBER_MODEL)
425
- save_audio_file(stem_path.replace(".wav", "_deverbed.wav"), stem_source_deverbed)
426
- save_audio_file(stem_path.replace(".wav", "_reverb_only.wav"), stem_source_2)
427
-
428
- is_bv_model_lead = (self.is_bv_model_rebalenced and self.is_vocal_split_model and stem_name == LEAD_VOCAL_STEM)
429
- is_bv_rebalance_lead = (self.is_bv_model_rebalenced and self.is_vocal_split_model and stem_name == BV_VOCAL_STEM)
430
- is_no_vocal_save = self.is_inst_only_voc_splitter and (stem_name == VOCAL_STEM or stem_name == BV_VOCAL_STEM or stem_name == LEAD_VOCAL_STEM) or is_bv_model_lead
431
- is_not_ensemble = (not self.is_ensemble_mode or self.is_vocal_split_model)
432
- is_do_not_save_inst = (self.is_save_vocal_only and self.is_sec_bv_rebalance and stem_name == INST_STEM)
433
-
434
- if is_bv_rebalance_lead:
435
- master_voc_source = spec_utils.match_array_shapes(self.master_vocal_source, stem_source, is_swap=True)
436
- bv_rebalance_lead_source = stem_source-master_voc_source
437
-
438
- if not is_bv_model_lead and not is_do_not_save_inst:
439
- if self.is_vocal_split_model or not self.is_secondary_model:
440
- if self.is_vocal_split_model and not self.is_inst_only_voc_splitter:
441
- save_voc_split_vocal(stem_name, stem_source)
442
- if is_bv_rebalance_lead:
443
- save_voc_split_vocal(LEAD_VOCAL_STEM, bv_rebalance_lead_source)
444
- else:
445
- if not is_no_vocal_save:
446
- save_with_message(stem_path, stem_name, stem_source)
447
-
448
- if self.is_save_inst_vocal_splitter and not self.is_save_vocal_only:
449
- save_voc_split_instrumental(stem_name, stem_source)
450
- if is_bv_rebalance_lead:
451
- save_voc_split_instrumental(LEAD_VOCAL_STEM, bv_rebalance_lead_source, is_inst_invert=True)
452
-
453
- self.set_progress_bar(0.95)
454
-
455
- if stem_name == VOCAL_STEM:
456
- self.master_vocal_path = stem_path
457
-
458
- def pitch_fix(self, source, sr_pitched, org_mix):
459
- semitone_shift = self.semitone_shift
460
- source = spec_utils.change_pitch_semitones(source, sr_pitched, semitone_shift=semitone_shift)[0]
461
- source = spec_utils.match_array_shapes(source, org_mix)
462
- return source
463
-
464
- def match_frequency_pitch(self, mix):
465
- source = mix
466
- if self.is_match_frequency_pitch and self.is_pitch_change:
467
- source, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift)
468
- source = self.pitch_fix(source, sr_pitched, mix)
469
-
470
- return source
471
-
472
- class SeperateMDX(SeperateAttributes):
473
-
474
- def seperate(self):
475
- samplerate = 44100
476
-
477
- if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, tuple):
478
- mix, source = self.primary_sources
479
- self.load_cached_sources()
480
- else:
481
- self.start_inference_console_write()
482
-
483
- if self.is_mdx_ckpt:
484
- model_params = torch.load(self.model_path, map_location=lambda storage, loc: storage)['hyper_parameters']
485
- self.dim_c, self.hop = model_params['dim_c'], model_params['hop_length']
486
- separator = MdxnetSet.ConvTDFNet(**model_params)
487
- self.model_run = separator.load_from_checkpoint(self.model_path).to(self.device).eval()
488
- else:
489
- if self.mdx_segment_size == self.dim_t and not self.is_other_gpu:
490
- ort_ = ort.InferenceSession(self.model_path, providers=self.run_type)
491
- self.model_run = lambda spek:ort_.run(None, {'input': spek.cpu().numpy()})[0]
492
- else:
493
- self.model_run = ConvertModel(load(self.model_path))
494
- self.model_run.to(self.device).eval()
495
-
496
- self.running_inference_console_write()
497
- mix = prepare_mix(self.audio_file)
498
-
499
- source = self.demix(mix)
500
-
501
- if not self.is_vocal_split_model:
502
- self.cache_source((mix, source))
503
- self.write_to_console(DONE, base_text='')
504
-
505
- mdx_net_cut = True if self.primary_stem in MDX_NET_FREQ_CUT and self.is_match_frequency_pitch else False
506
-
507
- if self.is_secondary_model_activated and self.secondary_model:
508
- self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method, main_model_primary=self.primary_stem)
509
-
510
- if not self.is_primary_stem_only:
511
- secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
512
- if not isinstance(self.secondary_source, np.ndarray):
513
- raw_mix = self.demix(self.match_frequency_pitch(mix), is_match_mix=True) if mdx_net_cut else self.match_frequency_pitch(mix)
514
- self.secondary_source = spec_utils.invert_stem(raw_mix, source) if self.is_invert_spec else mix.T-source.T
515
-
516
- self.secondary_source_map = self.final_process(secondary_stem_path, self.secondary_source, self.secondary_source_secondary, self.secondary_stem, samplerate)
517
-
518
- if not self.is_secondary_stem_only:
519
- primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
520
-
521
- if not isinstance(self.primary_source, np.ndarray):
522
- self.primary_source = source.T
523
-
524
- self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, samplerate)
525
-
526
- clear_gpu_cache()
527
-
528
- secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
529
-
530
- self.process_vocal_split_chain(secondary_sources)
531
-
532
- if self.is_secondary_model or self.is_pre_proc_model:
533
- return secondary_sources
534
-
535
- def initialize_model_settings(self):
536
- self.n_bins = self.n_fft//2+1
537
- self.trim = self.n_fft//2
538
- self.chunk_size = self.hop * (self.mdx_segment_size-1)
539
- self.gen_size = self.chunk_size-2*self.trim
540
- self.stft = STFT(self.n_fft, self.hop, self.dim_f, self.device)
541
-
542
- def demix(self, mix, is_match_mix=False):
543
- self.initialize_model_settings()
544
-
545
- org_mix = mix
546
- tar_waves_ = []
547
-
548
- if is_match_mix:
549
- chunk_size = self.hop * (256-1)
550
- overlap = 0.02
551
- else:
552
- chunk_size = self.chunk_size
553
- overlap = self.overlap_mdx
554
-
555
- if self.is_pitch_change:
556
- mix, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift)
557
-
558
- gen_size = chunk_size-2*self.trim
559
-
560
- pad = gen_size + self.trim - ((mix.shape[-1]) % gen_size)
561
- mixture = np.concatenate((np.zeros((2, self.trim), dtype='float32'), mix, np.zeros((2, pad), dtype='float32')), 1)
562
-
563
- step = self.chunk_size - self.n_fft if overlap == DEFAULT else int((1 - overlap) * chunk_size)
564
- result = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
565
- divider = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
566
- total = 0
567
- total_chunks = (mixture.shape[-1] + step - 1) // step
568
-
569
- for i in range(0, mixture.shape[-1], step):
570
- total += 1
571
- start = i
572
- end = min(i + chunk_size, mixture.shape[-1])
573
-
574
- chunk_size_actual = end - start
575
-
576
- if overlap == 0:
577
- window = None
578
- else:
579
- window = np.hanning(chunk_size_actual)
580
- window = np.tile(window[None, None, :], (1, 2, 1))
581
-
582
- mix_part_ = mixture[:, start:end]
583
- if end != i + chunk_size:
584
- pad_size = (i + chunk_size) - end
585
- mix_part_ = np.concatenate((mix_part_, np.zeros((2, pad_size), dtype='float32')), axis=-1)
586
-
587
- mix_part = torch.tensor([mix_part_], dtype=torch.float32).to(self.device)
588
- mix_waves = mix_part.split(self.mdx_batch_size)
589
-
590
- with torch.no_grad():
591
- for mix_wave in mix_waves:
592
- self.running_inference_progress_bar(total_chunks, is_match_mix=is_match_mix)
593
-
594
- tar_waves = self.run_model(mix_wave, is_match_mix=is_match_mix)
595
-
596
- if window is not None:
597
- tar_waves[..., :chunk_size_actual] *= window
598
- divider[..., start:end] += window
599
- else:
600
- divider[..., start:end] += 1
601
-
602
- result[..., start:end] += tar_waves[..., :end-start]
603
-
604
- tar_waves = result / divider
605
- tar_waves_.append(tar_waves)
606
-
607
- tar_waves_ = np.vstack(tar_waves_)[:, :, self.trim:-self.trim]
608
- tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :mix.shape[-1]]
609
-
610
- source = tar_waves[:,0:None]
611
-
612
- if self.is_pitch_change and not is_match_mix:
613
- source = self.pitch_fix(source, sr_pitched, org_mix)
614
-
615
- source = source if is_match_mix else source*self.compensate
616
-
617
- if self.is_denoise_model and not is_match_mix:
618
- if NO_STEM in self.primary_stem_native or self.primary_stem_native == INST_STEM:
619
- if org_mix.shape[1] != source.shape[1]:
620
- source = spec_utils.match_array_shapes(source, org_mix)
621
- source = org_mix - vr_denoiser(org_mix-source, self.device, model_path=self.DENOISER_MODEL)
622
- else:
623
- source = vr_denoiser(source, self.device, model_path=self.DENOISER_MODEL)
624
-
625
- return source
626
-
627
- def run_model(self, mix, is_match_mix=False):
628
-
629
- spek = self.stft(mix.to(self.device))*self.adjust
630
- spek[:, :, :3, :] *= 0
631
-
632
- if is_match_mix:
633
- spec_pred = spek.cpu().numpy()
634
- else:
635
- spec_pred = -self.model_run(-spek)*0.5+self.model_run(spek)*0.5 if self.is_denoise else self.model_run(spek)
636
-
637
- return self.stft.inverse(torch.tensor(spec_pred).to(self.device)).cpu().detach().numpy()
638
-
639
- class SeperateMDXC(SeperateAttributes):
640
-
641
- def seperate(self):
642
- samplerate = 44100
643
- sources = None
644
-
645
- if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, tuple):
646
- mix, sources = self.primary_sources
647
- self.load_cached_sources()
648
- else:
649
- self.start_inference_console_write()
650
- self.running_inference_console_write()
651
- mix = prepare_mix(self.audio_file)
652
- sources = self.demix(mix)
653
- if not self.is_vocal_split_model:
654
- self.cache_source((mix, sources))
655
- self.write_to_console(DONE, base_text='')
656
-
657
- stem_list = [self.mdx_c_configs.training.target_instrument] if self.mdx_c_configs.training.target_instrument else [i for i in self.mdx_c_configs.training.instruments]
658
-
659
- if self.is_secondary_model:
660
- if self.is_pre_proc_model:
661
- self.mdxnet_stem_select = stem_list[0]
662
- else:
663
- self.mdxnet_stem_select = self.main_model_primary_stem_4_stem if self.main_model_primary_stem_4_stem else self.primary_model_primary_stem
664
- self.primary_stem = self.mdxnet_stem_select
665
- self.secondary_stem = secondary_stem(self.mdxnet_stem_select)
666
- self.is_primary_stem_only, self.is_secondary_stem_only = False, False
667
-
668
- is_all_stems = self.mdxnet_stem_select == ALL_STEMS
669
- is_not_ensemble_master = not self.process_data['is_ensemble_master']
670
- is_not_single_stem = not len(stem_list) <= 2
671
- is_not_secondary_model = not self.is_secondary_model
672
- is_ensemble_4_stem = self.is_4_stem_ensemble and is_not_single_stem
673
-
674
- if (is_all_stems and is_not_ensemble_master and is_not_single_stem and is_not_secondary_model) or is_ensemble_4_stem and not self.is_pre_proc_model:
675
- for stem in stem_list:
676
- primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({stem}).wav')
677
- self.primary_source = sources[stem].T
678
- self.write_audio(primary_stem_path, self.primary_source, samplerate, stem_name=stem)
679
-
680
- if stem == VOCAL_STEM and not self.is_sec_bv_rebalance:
681
- self.process_vocal_split_chain({VOCAL_STEM:stem})
682
- else:
683
- if len(stem_list) == 1:
684
- source_primary = sources
685
- else:
686
- source_primary = sources[stem_list[0]] if self.is_multi_stem_ensemble and len(stem_list) == 2 else sources[self.mdxnet_stem_select]
687
- if self.is_secondary_model_activated and self.secondary_model:
688
- self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model,
689
- self.process_data,
690
- main_process_method=self.process_method,
691
- main_model_primary=self.primary_stem)
692
-
693
- if not self.is_primary_stem_only:
694
- secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
695
- if not isinstance(self.secondary_source, np.ndarray):
696
-
697
- if self.is_mdx_combine_stems and len(stem_list) >= 2:
698
- if len(stem_list) == 2:
699
- secondary_source = sources[self.secondary_stem]
700
- else:
701
- sources.pop(self.primary_stem)
702
- next_stem = next(iter(sources))
703
- secondary_source = np.zeros_like(sources[next_stem])
704
- for v in sources.values():
705
- secondary_source += v
706
-
707
- self.secondary_source = secondary_source.T
708
- else:
709
- self.secondary_source, raw_mix = source_primary, self.match_frequency_pitch(mix)
710
- self.secondary_source = spec_utils.to_shape(self.secondary_source, raw_mix.shape)
711
-
712
- if self.is_invert_spec:
713
- self.secondary_source = spec_utils.invert_stem(raw_mix, self.secondary_source)
714
- else:
715
- self.secondary_source = (-self.secondary_source.T+raw_mix.T)
716
-
717
- self.secondary_source_map = self.final_process(secondary_stem_path, self.secondary_source, self.secondary_source_secondary, self.secondary_stem, samplerate)
718
-
719
- if not self.is_secondary_stem_only:
720
- primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
721
- if not isinstance(self.primary_source, np.ndarray):
722
- self.primary_source = source_primary.T
723
-
724
- self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, samplerate)
725
-
726
- clear_gpu_cache()
727
-
728
- secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
729
- self.process_vocal_split_chain(secondary_sources)
730
-
731
- if self.is_secondary_model or self.is_pre_proc_model:
732
- return secondary_sources
733
-
734
- def demix(self, mix):
735
- sr_pitched = 441000
736
- org_mix = mix
737
- if self.is_pitch_change:
738
- mix, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift)
739
-
740
- model = TFC_TDF_net(self.mdx_c_configs, device=self.device)
741
- model.load_state_dict(torch.load(self.model_path, map_location=cpu))
742
- model.to(self.device).eval()
743
- mix = torch.tensor(mix, dtype=torch.float32)
744
-
745
- try:
746
- S = model.num_target_instruments
747
- except Exception as e:
748
- S = model.module.num_target_instruments
749
-
750
- mdx_segment_size = self.mdx_c_configs.inference.dim_t if self.is_mdx_c_seg_def else self.mdx_segment_size
751
-
752
- batch_size = self.mdx_batch_size
753
- chunk_size = self.mdx_c_configs.audio.hop_length * (mdx_segment_size - 1)
754
- overlap = self.overlap_mdx23
755
-
756
- hop_size = chunk_size // overlap
757
- mix_shape = mix.shape[1]
758
- pad_size = hop_size - (mix_shape - chunk_size) % hop_size
759
- mix = torch.cat([torch.zeros(2, chunk_size - hop_size), mix, torch.zeros(2, pad_size + chunk_size - hop_size)], 1)
760
-
761
- chunks = mix.unfold(1, chunk_size, hop_size).transpose(0, 1)
762
- batches = [chunks[i : i + batch_size] for i in range(0, len(chunks), batch_size)]
763
-
764
- X = torch.zeros(S, *mix.shape) if S > 1 else torch.zeros_like(mix)
765
- X = X.to(self.device)
766
-
767
- with torch.no_grad():
768
- cnt = 0
769
- for batch in batches:
770
- self.running_inference_progress_bar(len(batches))
771
- x = model(batch.to(self.device))
772
-
773
- for w in x:
774
- X[..., cnt * hop_size : cnt * hop_size + chunk_size] += w
775
- cnt += 1
776
-
777
- estimated_sources = X[..., chunk_size - hop_size:-(pad_size + chunk_size - hop_size)] / overlap
778
- del X
779
- pitch_fix = lambda s:self.pitch_fix(s, sr_pitched, org_mix)
780
-
781
- if S > 1:
782
- sources = {k: pitch_fix(v) if self.is_pitch_change else v for k, v in zip(self.mdx_c_configs.training.instruments, estimated_sources.cpu().detach().numpy())}
783
- del estimated_sources
784
- if self.is_denoise_model:
785
- if VOCAL_STEM in sources.keys() and INST_STEM in sources.keys():
786
- sources[VOCAL_STEM] = vr_denoiser(sources[VOCAL_STEM], self.device, model_path=self.DENOISER_MODEL)
787
- if sources[VOCAL_STEM].shape[1] != org_mix.shape[1]:
788
- sources[VOCAL_STEM] = spec_utils.match_array_shapes(sources[VOCAL_STEM], org_mix)
789
- sources[INST_STEM] = org_mix - sources[VOCAL_STEM]
790
-
791
- return sources
792
- else:
793
- est_s = estimated_sources.cpu().detach().numpy()
794
- del estimated_sources
795
- return pitch_fix(est_s) if self.is_pitch_change else est_s
796
-
797
- class SeperateDemucs(SeperateAttributes):
798
- def seperate(self):
799
- samplerate = 44100
800
- source = None
801
- model_scale = None
802
- stem_source = None
803
- stem_source_secondary = None
804
- inst_mix = None
805
- inst_source = None
806
- is_no_write = False
807
- is_no_piano_guitar = False
808
- is_no_cache = False
809
-
810
- if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and not self.pre_proc_model:
811
- source = self.primary_sources
812
- self.load_cached_sources()
813
- else:
814
- self.start_inference_console_write()
815
- is_no_cache = True
816
-
817
- mix = prepare_mix(self.audio_file)
818
-
819
- if is_no_cache:
820
- if self.demucs_version == DEMUCS_V1:
821
- if str(self.model_path).endswith(".gz"):
822
- self.model_path = gzip.open(self.model_path, "rb")
823
- klass, args, kwargs, state = torch.load(self.model_path)
824
- self.demucs = klass(*args, **kwargs)
825
- self.demucs.to(self.device)
826
- self.demucs.load_state_dict(state)
827
- elif self.demucs_version == DEMUCS_V2:
828
- self.demucs = auto_load_demucs_model_v2(self.demucs_source_list, self.model_path)
829
- self.demucs.to(self.device)
830
- self.demucs.load_state_dict(torch.load(self.model_path))
831
- self.demucs.eval()
832
- else:
833
- self.demucs = HDemucs(sources=self.demucs_source_list)
834
- self.demucs = _gm(name=os.path.splitext(os.path.basename(self.model_path))[0],
835
- repo=Path(os.path.dirname(self.model_path)))
836
- self.demucs = demucs_segments(self.segment, self.demucs)
837
- self.demucs.to(self.device)
838
- self.demucs.eval()
839
-
840
- if self.pre_proc_model:
841
- if self.primary_stem not in [VOCAL_STEM, INST_STEM]:
842
- is_no_write = True
843
- self.write_to_console(DONE, base_text='')
844
- mix_no_voc = process_secondary_model(self.pre_proc_model, self.process_data, is_pre_proc_model=True)
845
- inst_mix = prepare_mix(mix_no_voc[INST_STEM])
846
- self.process_iteration()
847
- self.running_inference_console_write(is_no_write=is_no_write)
848
- inst_source = self.demix_demucs(inst_mix)
849
- self.process_iteration()
850
-
851
- self.running_inference_console_write(is_no_write=is_no_write) if not self.pre_proc_model else None
852
-
853
- if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and self.pre_proc_model:
854
- source = self.primary_sources
855
- else:
856
- source = self.demix_demucs(mix)
857
-
858
- self.write_to_console(DONE, base_text='')
859
-
860
- del self.demucs
861
- clear_gpu_cache()
862
-
863
- if isinstance(inst_source, np.ndarray):
864
- source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[VOCAL_STEM]], source[self.demucs_source_map[VOCAL_STEM]])
865
- inst_source[self.demucs_source_map[VOCAL_STEM]] = source_reshape
866
- source = inst_source
867
-
868
- if isinstance(source, np.ndarray):
869
-
870
- if len(source) == 2:
871
- self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER
872
- else:
873
- self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER if len(source) == 6 else DEMUCS_4_SOURCE_MAPPER
874
-
875
- if len(source) == 6 and self.process_data['is_ensemble_master'] or len(source) == 6 and self.is_secondary_model:
876
- is_no_piano_guitar = True
877
- six_stem_other_source = list(source)
878
- six_stem_other_source = [i for n, i in enumerate(source) if n in [self.demucs_source_map[OTHER_STEM], self.demucs_source_map[GUITAR_STEM], self.demucs_source_map[PIANO_STEM]]]
879
- other_source = np.zeros_like(six_stem_other_source[0])
880
- for i in six_stem_other_source:
881
- other_source += i
882
- source_reshape = spec_utils.reshape_sources(source[self.demucs_source_map[OTHER_STEM]], other_source)
883
- source[self.demucs_source_map[OTHER_STEM]] = source_reshape
884
-
885
- if not self.is_vocal_split_model:
886
- self.cache_source(source)
887
-
888
- if (self.demucs_stems == ALL_STEMS and not self.process_data['is_ensemble_master']) or self.is_4_stem_ensemble and not self.is_return_dual:
889
- for stem_name, stem_value in self.demucs_source_map.items():
890
- if self.is_secondary_model_activated and not self.is_secondary_model and not stem_value >= 4:
891
- if self.secondary_model_4_stem[stem_value]:
892
- model_scale = self.secondary_model_4_stem_scale[stem_value]
893
- stem_source_secondary = process_secondary_model(self.secondary_model_4_stem[stem_value], self.process_data, main_model_primary_stem_4_stem=stem_name, is_source_load=True, is_return_dual=False)
894
- if isinstance(stem_source_secondary, np.ndarray):
895
- stem_source_secondary = stem_source_secondary[1 if self.secondary_model_4_stem[stem_value].demucs_stem_count == 2 else stem_value].T
896
- elif type(stem_source_secondary) is dict:
897
- stem_source_secondary = stem_source_secondary[stem_name]
898
-
899
- stem_source_secondary = None if stem_value >= 4 else stem_source_secondary
900
- stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({stem_name}).wav')
901
- stem_source = source[stem_value].T
902
-
903
- stem_source = self.process_secondary_stem(stem_source, secondary_model_source=stem_source_secondary, model_scale=model_scale)
904
- self.write_audio(stem_path, stem_source, samplerate, stem_name=stem_name)
905
-
906
- if stem_name == VOCAL_STEM and not self.is_sec_bv_rebalance:
907
- self.process_vocal_split_chain({VOCAL_STEM:stem_source})
908
-
909
- if self.is_secondary_model:
910
- return source
911
- else:
912
- if self.is_secondary_model_activated and self.secondary_model:
913
- self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
914
-
915
- if not self.is_primary_stem_only:
916
- def secondary_save(sec_stem_name, source, raw_mixture=None, is_inst_mixture=False):
917
- secondary_source = self.secondary_source if not is_inst_mixture else None
918
- secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({sec_stem_name}).wav')
919
- secondary_source_secondary = None
920
-
921
- if not isinstance(secondary_source, np.ndarray):
922
- if self.is_demucs_combine_stems:
923
- source = list(source)
924
- if is_inst_mixture:
925
- source = [i for n, i in enumerate(source) if not n in [self.demucs_source_map[self.primary_stem], self.demucs_source_map[VOCAL_STEM]]]
926
- else:
927
- source.pop(self.demucs_source_map[self.primary_stem])
928
-
929
- source = source[:len(source) - 2] if is_no_piano_guitar else source
930
- secondary_source = np.zeros_like(source[0])
931
- for i in source:
932
- secondary_source += i
933
- secondary_source = secondary_source.T
934
- else:
935
- if not isinstance(raw_mixture, np.ndarray):
936
- raw_mixture = prepare_mix(self.audio_file)
937
-
938
- secondary_source = source[self.demucs_source_map[self.primary_stem]]
939
-
940
- if self.is_invert_spec:
941
- secondary_source = spec_utils.invert_stem(raw_mixture, secondary_source)
942
- else:
943
- raw_mixture = spec_utils.reshape_sources(secondary_source, raw_mixture)
944
- secondary_source = (-secondary_source.T+raw_mixture.T)
945
-
946
- if not is_inst_mixture:
947
- self.secondary_source = secondary_source
948
- secondary_source_secondary = self.secondary_source_secondary
949
- self.secondary_source = self.process_secondary_stem(secondary_source, secondary_source_secondary)
950
- self.secondary_source_map = {self.secondary_stem: self.secondary_source}
951
-
952
- self.write_audio(secondary_stem_path, secondary_source, samplerate, stem_name=sec_stem_name)
953
-
954
- secondary_save(self.secondary_stem, source, raw_mixture=mix)
955
-
956
- if self.is_demucs_pre_proc_model_inst_mix and self.pre_proc_model and not self.is_4_stem_ensemble:
957
- secondary_save(f"{self.secondary_stem} {INST_STEM}", source, raw_mixture=inst_mix, is_inst_mixture=True)
958
-
959
- if not self.is_secondary_stem_only:
960
- primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
961
- if not isinstance(self.primary_source, np.ndarray):
962
- self.primary_source = source[self.demucs_source_map[self.primary_stem]].T
963
-
964
- self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, samplerate)
965
-
966
- secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
967
-
968
- self.process_vocal_split_chain(secondary_sources)
969
-
970
- if self.is_secondary_model:
971
- return secondary_sources
972
-
973
- def demix_demucs(self, mix):
974
-
975
- org_mix = mix
976
-
977
- if self.is_pitch_change:
978
- mix, sr_pitched = spec_utils.change_pitch_semitones(mix, 44100, semitone_shift=-self.semitone_shift)
979
-
980
- processed = {}
981
- mix = torch.tensor(mix, dtype=torch.float32)
982
- ref = mix.mean(0)
983
- mix = (mix - ref.mean()) / ref.std()
984
- mix_infer = mix
985
-
986
- with torch.no_grad():
987
- if self.demucs_version == DEMUCS_V1:
988
- sources = apply_model_v1(self.demucs,
989
- mix_infer.to(self.device),
990
- self.shifts,
991
- self.is_split_mode,
992
- set_progress_bar=self.set_progress_bar)
993
- elif self.demucs_version == DEMUCS_V2:
994
- sources = apply_model_v2(self.demucs,
995
- mix_infer.to(self.device),
996
- self.shifts,
997
- self.is_split_mode,
998
- self.overlap,
999
- set_progress_bar=self.set_progress_bar)
1000
- else:
1001
- sources = apply_model(self.demucs,
1002
- mix_infer[None],
1003
- self.shifts,
1004
- self.is_split_mode,
1005
- self.overlap,
1006
- static_shifts=1 if self.shifts == 0 else self.shifts,
1007
- set_progress_bar=self.set_progress_bar,
1008
- device=self.device)[0]
1009
-
1010
- sources = (sources * ref.std() + ref.mean()).cpu().numpy()
1011
- sources[[0,1]] = sources[[1,0]]
1012
- processed[mix] = sources[:,:,0:None].copy()
1013
- sources = list(processed.values())
1014
- sources = [s[:,:,0:None] for s in sources]
1015
- #sources = [self.pitch_fix(s[:,:,0:None], sr_pitched, org_mix) if self.is_pitch_change else s[:,:,0:None] for s in sources]
1016
- sources = np.concatenate(sources, axis=-1)
1017
-
1018
- if self.is_pitch_change:
1019
- sources = np.stack([self.pitch_fix(stem, sr_pitched, org_mix) for stem in sources])
1020
-
1021
- return sources
1022
-
1023
- class SeperateVR(SeperateAttributes):
1024
-
1025
- def seperate(self):
1026
- if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, tuple):
1027
- y_spec, v_spec = self.primary_sources
1028
- self.load_cached_sources()
1029
- else:
1030
- self.start_inference_console_write()
1031
-
1032
- device = self.device
1033
-
1034
- nn_arch_sizes = [
1035
- 31191, # default
1036
- 33966, 56817, 123821, 123812, 129605, 218409, 537238, 537227]
1037
- vr_5_1_models = [56817, 218409]
1038
- model_size = math.ceil(os.stat(self.model_path).st_size / 1024)
1039
- nn_arch_size = min(nn_arch_sizes, key=lambda x:abs(x-model_size))
1040
-
1041
- if nn_arch_size in vr_5_1_models or self.is_vr_51_model:
1042
- self.model_run = nets_new.CascadedNet(self.mp.param['bins'] * 2,
1043
- nn_arch_size,
1044
- nout=self.model_capacity[0],
1045
- nout_lstm=self.model_capacity[1])
1046
- self.is_vr_51_model = True
1047
- else:
1048
- self.model_run = nets.determine_model_capacity(self.mp.param['bins'] * 2, nn_arch_size)
1049
-
1050
- self.model_run.load_state_dict(torch.load(self.model_path, map_location=cpu))
1051
- self.model_run.to(device)
1052
-
1053
- self.running_inference_console_write()
1054
-
1055
- y_spec, v_spec = self.inference_vr(self.loading_mix(), device, self.aggressiveness)
1056
- if not self.is_vocal_split_model:
1057
- self.cache_source((y_spec, v_spec))
1058
- self.write_to_console(DONE, base_text='')
1059
-
1060
- if self.is_secondary_model_activated and self.secondary_model:
1061
- self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method, main_model_primary=self.primary_stem)
1062
-
1063
- if not self.is_secondary_stem_only:
1064
- primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
1065
- if not isinstance(self.primary_source, np.ndarray):
1066
- self.primary_source = self.spec_to_wav(y_spec).T
1067
- if not self.model_samplerate == 44100:
1068
- self.primary_source = librosa.resample(self.primary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
1069
-
1070
- self.primary_source_map = self.final_process(primary_stem_path, self.primary_source, self.secondary_source_primary, self.primary_stem, 44100)
1071
-
1072
- if not self.is_primary_stem_only:
1073
- secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
1074
- if not isinstance(self.secondary_source, np.ndarray):
1075
- self.secondary_source = self.spec_to_wav(v_spec).T
1076
- if not self.model_samplerate == 44100:
1077
- self.secondary_source = librosa.resample(self.secondary_source.T, orig_sr=self.model_samplerate, target_sr=44100).T
1078
-
1079
- self.secondary_source_map = self.final_process(secondary_stem_path, self.secondary_source, self.secondary_source_secondary, self.secondary_stem, 44100)
1080
-
1081
- clear_gpu_cache()
1082
- secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
1083
-
1084
- self.process_vocal_split_chain(secondary_sources)
1085
-
1086
- if self.is_secondary_model:
1087
- return secondary_sources
1088
-
1089
- def loading_mix(self):
1090
-
1091
- X_wave, X_spec_s = {}, {}
1092
-
1093
- bands_n = len(self.mp.param['band'])
1094
-
1095
- audio_file = spec_utils.write_array_to_mem(self.audio_file, subtype=self.wav_type_set)
1096
- is_mp3 = audio_file.endswith('.mp3') if isinstance(audio_file, str) else False
1097
-
1098
- for d in range(bands_n, 0, -1):
1099
- bp = self.mp.param['band'][d]
1100
-
1101
- if OPERATING_SYSTEM == 'Darwin':
1102
- wav_resolution = 'polyphase' if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else bp['res_type']
1103
- else:
1104
- wav_resolution = bp['res_type']
1105
-
1106
- if d == bands_n: # high-end band
1107
- X_wave[d], _ = librosa.load(audio_file, bp['sr'], False, dtype=np.float32, res_type=wav_resolution)
1108
- X_spec_s[d] = spec_utils.wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], self.mp, band=d, is_v51_model=self.is_vr_51_model)
1109
-
1110
- if not np.any(X_wave[d]) and is_mp3:
1111
- X_wave[d] = rerun_mp3(audio_file, bp['sr'])
1112
-
1113
- if X_wave[d].ndim == 1:
1114
- X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
1115
- else: # lower bands
1116
- X_wave[d] = librosa.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=wav_resolution)
1117
- X_spec_s[d] = spec_utils.wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], self.mp, band=d, is_v51_model=self.is_vr_51_model)
1118
-
1119
- if d == bands_n and self.high_end_process != 'none':
1120
- self.input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
1121
- self.input_high_end = X_spec_s[d][:, bp['n_fft']//2-self.input_high_end_h:bp['n_fft']//2, :]
1122
-
1123
- X_spec = spec_utils.combine_spectrograms(X_spec_s, self.mp, is_v51_model=self.is_vr_51_model)
1124
-
1125
- del X_wave, X_spec_s, audio_file
1126
-
1127
- return X_spec
1128
-
1129
- def inference_vr(self, X_spec, device, aggressiveness):
1130
- def _execute(X_mag_pad, roi_size):
1131
- X_dataset = []
1132
- patches = (X_mag_pad.shape[2] - 2 * self.model_run.offset) // roi_size
1133
- total_iterations = patches//self.batch_size if not self.is_tta else (patches//self.batch_size)*2
1134
- for i in range(patches):
1135
- start = i * roi_size
1136
- X_mag_window = X_mag_pad[:, :, start:start + self.window_size]
1137
- X_dataset.append(X_mag_window)
1138
-
1139
- X_dataset = np.asarray(X_dataset)
1140
- self.model_run.eval()
1141
- with torch.no_grad():
1142
- mask = []
1143
- for i in range(0, patches, self.batch_size):
1144
- self.progress_value += 1
1145
- if self.progress_value >= total_iterations:
1146
- self.progress_value = total_iterations
1147
- self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value)
1148
- X_batch = X_dataset[i: i + self.batch_size]
1149
- X_batch = torch.from_numpy(X_batch).to(device)
1150
- pred = self.model_run.predict_mask(X_batch)
1151
- if not pred.size()[3] > 0:
1152
- raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
1153
- pred = pred.detach().cpu().numpy()
1154
- pred = np.concatenate(pred, axis=2)
1155
- mask.append(pred)
1156
- if len(mask) == 0:
1157
- raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
1158
-
1159
- mask = np.concatenate(mask, axis=2)
1160
- return mask
1161
-
1162
- def postprocess(mask, X_mag, X_phase):
1163
- is_non_accom_stem = False
1164
- for stem in NON_ACCOM_STEMS:
1165
- if stem == self.primary_stem:
1166
- is_non_accom_stem = True
1167
-
1168
- mask = spec_utils.adjust_aggr(mask, is_non_accom_stem, aggressiveness)
1169
-
1170
- if self.is_post_process:
1171
- mask = spec_utils.merge_artifacts(mask, thres=self.post_process_threshold)
1172
-
1173
- y_spec = mask * X_mag * np.exp(1.j * X_phase)
1174
- v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
1175
-
1176
- return y_spec, v_spec
1177
-
1178
- X_mag, X_phase = spec_utils.preprocess(X_spec)
1179
- n_frame = X_mag.shape[2]
1180
- pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.window_size, self.model_run.offset)
1181
- X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
1182
- X_mag_pad /= X_mag_pad.max()
1183
- mask = _execute(X_mag_pad, roi_size)
1184
-
1185
- if self.is_tta:
1186
- pad_l += roi_size // 2
1187
- pad_r += roi_size // 2
1188
- X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
1189
- X_mag_pad /= X_mag_pad.max()
1190
- mask_tta = _execute(X_mag_pad, roi_size)
1191
- mask_tta = mask_tta[:, :, roi_size // 2:]
1192
- mask = (mask[:, :, :n_frame] + mask_tta[:, :, :n_frame]) * 0.5
1193
- else:
1194
- mask = mask[:, :, :n_frame]
1195
-
1196
- y_spec, v_spec = postprocess(mask, X_mag, X_phase)
1197
-
1198
- return y_spec, v_spec
1199
-
1200
- def spec_to_wav(self, spec):
1201
- if self.high_end_process.startswith('mirroring') and isinstance(self.input_high_end, np.ndarray) and self.input_high_end_h:
1202
- input_high_end_ = spec_utils.mirroring(self.high_end_process, spec, self.input_high_end, self.mp)
1203
- wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp, self.input_high_end_h, input_high_end_, is_v51_model=self.is_vr_51_model)
1204
- else:
1205
- wav = spec_utils.cmb_spectrogram_to_wave(spec, self.mp, is_v51_model=self.is_vr_51_model)
1206
-
1207
- return wav
1208
-
1209
- def process_secondary_model(secondary_model: ModelData,
1210
- process_data,
1211
- main_model_primary_stem_4_stem=None,
1212
- is_source_load=False,
1213
- main_process_method=None,
1214
- is_pre_proc_model=False,
1215
- is_return_dual=True,
1216
- main_model_primary=None):
1217
-
1218
- if not is_pre_proc_model:
1219
- process_iteration = process_data['process_iteration']
1220
- process_iteration()
1221
-
1222
- if secondary_model.process_method == VR_ARCH_TYPE:
1223
- seperator = SeperateVR(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, main_model_primary=main_model_primary)
1224
- if secondary_model.process_method == MDX_ARCH_TYPE:
1225
- if secondary_model.is_mdx_c:
1226
- seperator = SeperateMDXC(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, is_return_dual=is_return_dual, main_model_primary=main_model_primary)
1227
- else:
1228
- seperator = SeperateMDX(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, main_model_primary=main_model_primary)
1229
- if secondary_model.process_method == DEMUCS_ARCH_TYPE:
1230
- seperator = SeperateDemucs(secondary_model, process_data, main_model_primary_stem_4_stem=main_model_primary_stem_4_stem, main_process_method=main_process_method, is_return_dual=is_return_dual, main_model_primary=main_model_primary)
1231
-
1232
- secondary_sources = seperator.seperate()
1233
-
1234
- if type(secondary_sources) is dict and not is_source_load and not is_pre_proc_model:
1235
- return gather_sources(secondary_model.primary_model_primary_stem, secondary_stem(secondary_model.primary_model_primary_stem), secondary_sources)
1236
- else:
1237
- return secondary_sources
1238
-
1239
- def process_chain_model(secondary_model: ModelData,
1240
- process_data,
1241
- vocal_stem_path,
1242
- master_vocal_source,
1243
- master_inst_source=None):
1244
-
1245
- process_iteration = process_data['process_iteration']
1246
- process_iteration()
1247
-
1248
- if secondary_model.bv_model_rebalance:
1249
- vocal_source = spec_utils.reduce_mix_bv(master_inst_source, master_vocal_source, reduction_rate=secondary_model.bv_model_rebalance)
1250
- else:
1251
- vocal_source = master_vocal_source
1252
-
1253
- vocal_stem_path = [vocal_source, os.path.splitext(os.path.basename(vocal_stem_path))[0]]
1254
-
1255
- if secondary_model.process_method == VR_ARCH_TYPE:
1256
- seperator = SeperateVR(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source)
1257
- if secondary_model.process_method == MDX_ARCH_TYPE:
1258
- if secondary_model.is_mdx_c:
1259
- seperator = SeperateMDXC(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source)
1260
- else:
1261
- seperator = SeperateMDX(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source)
1262
- if secondary_model.process_method == DEMUCS_ARCH_TYPE:
1263
- seperator = SeperateDemucs(secondary_model, process_data, vocal_stem_path=vocal_stem_path, master_inst_source=master_inst_source, master_vocal_source=master_vocal_source)
1264
-
1265
- secondary_sources = seperator.seperate()
1266
-
1267
- if type(secondary_sources) is dict:
1268
- return secondary_sources
1269
- else:
1270
- return None
1271
-
1272
- def gather_sources(primary_stem_name, secondary_stem_name, secondary_sources: dict):
1273
-
1274
- source_primary = False
1275
- source_secondary = False
1276
-
1277
- for key, value in secondary_sources.items():
1278
- if key in primary_stem_name:
1279
- source_primary = value
1280
- if key in secondary_stem_name:
1281
- source_secondary = value
1282
-
1283
- return source_primary, source_secondary
1284
-
1285
- def prepare_mix(mix):
1286
-
1287
- audio_path = mix
1288
-
1289
- if not isinstance(mix, np.ndarray):
1290
- mix, sr = librosa.load(mix, mono=False, sr=44100)
1291
- else:
1292
- mix = mix.T
1293
-
1294
- if isinstance(audio_path, str):
1295
- if not np.any(mix) and audio_path.endswith('.mp3'):
1296
- mix = rerun_mp3(audio_path)
1297
-
1298
- if mix.ndim == 1:
1299
- mix = np.asfortranarray([mix,mix])
1300
-
1301
- return mix
1302
-
1303
- def rerun_mp3(audio_file, sample_rate=44100):
1304
-
1305
- with audioread.audio_open(audio_file) as f:
1306
- track_length = int(f.duration)
1307
-
1308
- return librosa.load(audio_file, duration=track_length, mono=False, sr=sample_rate)[0]
1309
-
1310
- def save_format(audio_path, save_format, mp3_bit_set):
1311
-
1312
- if not save_format == WAV:
1313
-
1314
- if OPERATING_SYSTEM == 'Darwin':
1315
- FFMPEG_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ffmpeg')
1316
- pydub.AudioSegment.converter = FFMPEG_PATH
1317
-
1318
- musfile = pydub.AudioSegment.from_wav(audio_path)
1319
-
1320
- if save_format == FLAC:
1321
- audio_path_flac = audio_path.replace(".wav", ".flac")
1322
- musfile.export(audio_path_flac, format="flac")
1323
-
1324
- if save_format == MP3:
1325
- audio_path_mp3 = audio_path.replace(".wav", ".mp3")
1326
- try:
1327
- musfile.export(audio_path_mp3, format="mp3", bitrate=mp3_bit_set, codec="libmp3lame")
1328
- except Exception as e:
1329
- print(e)
1330
- musfile.export(audio_path_mp3, format="mp3", bitrate=mp3_bit_set)
1331
-
1332
- try:
1333
- os.remove(audio_path)
1334
- except Exception as e:
1335
- print(e)
1336
-
1337
- def pitch_shift(mix):
1338
- new_sr = 31183
1339
-
1340
- # Resample audio file
1341
- resampled_audio = signal.resample_poly(mix, new_sr, 44100)
1342
-
1343
- return resampled_audio
1344
-
1345
- def list_to_dictionary(lst):
1346
- dictionary = {item: index for index, item in enumerate(lst)}
1347
- return dictionary
1348
-
1349
- def vr_denoiser(X, device, hop_length=1024, n_fft=2048, cropsize=256, is_deverber=False, model_path=None):
1350
- batchsize = 4
1351
-
1352
- if is_deverber:
1353
- nout, nout_lstm = 64, 128
1354
- mp = ModelParameters(os.path.join('lib_v5', 'vr_network', 'modelparams', '4band_v3.json'))
1355
- n_fft = mp.param['bins'] * 2
1356
- else:
1357
- mp = None
1358
- hop_length=1024
1359
- nout, nout_lstm = 16, 128
1360
-
1361
- model = nets_new.CascadedNet(n_fft, nout=nout, nout_lstm=nout_lstm)
1362
- model.load_state_dict(torch.load(model_path, map_location=cpu))
1363
- model.to(device)
1364
-
1365
- if mp is None:
1366
- X_spec = spec_utils.wave_to_spectrogram_old(X, hop_length, n_fft)
1367
- else:
1368
- X_spec = loading_mix(X.T, mp)
1369
-
1370
- #PreProcess
1371
- X_mag = np.abs(X_spec)
1372
- X_phase = np.angle(X_spec)
1373
-
1374
- #Sep
1375
- n_frame = X_mag.shape[2]
1376
- pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, cropsize, model.offset)
1377
- X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
1378
- X_mag_pad /= X_mag_pad.max()
1379
-
1380
- X_dataset = []
1381
- patches = (X_mag_pad.shape[2] - 2 * model.offset) // roi_size
1382
- for i in range(patches):
1383
- start = i * roi_size
1384
- X_mag_crop = X_mag_pad[:, :, start:start + cropsize]
1385
- X_dataset.append(X_mag_crop)
1386
-
1387
- X_dataset = np.asarray(X_dataset)
1388
-
1389
- model.eval()
1390
-
1391
- with torch.no_grad():
1392
- mask = []
1393
- # To reduce the overhead, dataloader is not used.
1394
- for i in range(0, patches, batchsize):
1395
- X_batch = X_dataset[i: i + batchsize]
1396
- X_batch = torch.from_numpy(X_batch).to(device)
1397
-
1398
- pred = model.predict_mask(X_batch)
1399
-
1400
- pred = pred.detach().cpu().numpy()
1401
- pred = np.concatenate(pred, axis=2)
1402
- mask.append(pred)
1403
-
1404
- mask = np.concatenate(mask, axis=2)
1405
-
1406
- mask = mask[:, :, :n_frame]
1407
-
1408
- #Post Proc
1409
- if is_deverber:
1410
- v_spec = mask * X_mag * np.exp(1.j * X_phase)
1411
- y_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
1412
- else:
1413
- v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
1414
-
1415
- if mp is None:
1416
- wave = spec_utils.spectrogram_to_wave_old(v_spec, hop_length=1024)
1417
- else:
1418
- wave = spec_utils.cmb_spectrogram_to_wave(v_spec, mp, is_v51_model=True).T
1419
-
1420
- wave = spec_utils.match_array_shapes(wave, X)
1421
-
1422
- if is_deverber:
1423
- wave_2 = spec_utils.cmb_spectrogram_to_wave(y_spec, mp, is_v51_model=True).T
1424
- wave_2 = spec_utils.match_array_shapes(wave_2, X)
1425
- return wave, wave_2
1426
- else:
1427
- return wave
1428
-
1429
- def loading_mix(X, mp):
1430
-
1431
- X_wave, X_spec_s = {}, {}
1432
-
1433
- bands_n = len(mp.param['band'])
1434
-
1435
- for d in range(bands_n, 0, -1):
1436
- bp = mp.param['band'][d]
1437
-
1438
- if OPERATING_SYSTEM == 'Darwin':
1439
- wav_resolution = 'polyphase' if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else bp['res_type']
1440
- else:
1441
- wav_resolution = 'polyphase'#bp['res_type']
1442
-
1443
- if d == bands_n: # high-end band
1444
- X_wave[d] = X
1445
-
1446
- else: # lower bands
1447
- X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=wav_resolution)
1448
-
1449
- X_spec_s[d] = spec_utils.wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], mp, band=d, is_v51_model=True)
1450
-
1451
- # if d == bands_n and is_high_end_process:
1452
- # input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start'])
1453
- # input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
1454
-
1455
- X_spec = spec_utils.combine_spectrograms(X_spec_s, mp)
1456
-
1457
- del X_wave, X_spec_s
1458
-
1459
- return X_spec