File size: 4,259 Bytes
d198ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from abc import ABCMeta

import torch
import torch.nn as nn
from pytorch_lightning import LightningModule
from .modules import TFC_TDF

dim_s = 4

class AbstractMDXNet(LightningModule):
    __metaclass__ = ABCMeta

    def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap):
        super().__init__()
        self.target_name = target_name
        self.lr = lr
        self.optimizer = optimizer
        self.dim_c = dim_c
        self.dim_f = dim_f
        self.dim_t = dim_t
        self.n_fft = n_fft
        self.n_bins = n_fft // 2 + 1
        self.hop_length = hop_length
        self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False)
        self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False)

    def configure_optimizers(self):
        if self.optimizer == 'rmsprop':
            return torch.optim.RMSprop(self.parameters(), self.lr)
        
        if self.optimizer == 'adamw':
            return torch.optim.AdamW(self.parameters(), self.lr)

class ConvTDFNet(AbstractMDXNet):
    def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length,
                 num_blocks, l, g, k, bn, bias, overlap):

        super(ConvTDFNet, self).__init__(
            target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap)
        self.save_hyperparameters()

        self.num_blocks = num_blocks
        self.l = l
        self.g = g
        self.k = k
        self.bn = bn
        self.bias = bias

        if optimizer == 'rmsprop':
            norm = nn.BatchNorm2d
            
        if optimizer == 'adamw':
            norm = lambda input:nn.GroupNorm(2, input)
            
        self.n = num_blocks // 2
        scale = (2, 2)

        self.first_conv = nn.Sequential(
            nn.Conv2d(in_channels=self.dim_c, out_channels=g, kernel_size=(1, 1)),
            norm(g),
            nn.ReLU(),
        )

        f = self.dim_f
        c = g
        self.encoding_blocks = nn.ModuleList()
        self.ds = nn.ModuleList()
        for i in range(self.n):
            self.encoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
            self.ds.append(
                nn.Sequential(
                    nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale),
                    norm(c + g),
                    nn.ReLU()
                )
            )
            f = f // 2
            c += g

        self.bottleneck_block = TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm)

        self.decoding_blocks = nn.ModuleList()
        self.us = nn.ModuleList()
        for i in range(self.n):
            self.us.append(
                nn.Sequential(
                    nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale),
                    norm(c - g),
                    nn.ReLU()
                )
            )
            f = f * 2
            c -= g

            self.decoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))

        self.final_conv = nn.Sequential(
            nn.Conv2d(in_channels=c, out_channels=self.dim_c, kernel_size=(1, 1)),
        )

    def forward(self, x):

        x = self.first_conv(x)

        x = x.transpose(-1, -2)

        ds_outputs = []
        for i in range(self.n):
            x = self.encoding_blocks[i](x)
            ds_outputs.append(x)
            x = self.ds[i](x)

        x = self.bottleneck_block(x)

        for i in range(self.n):
            x = self.us[i](x)
            x *= ds_outputs[-i - 1]
            x = self.decoding_blocks[i](x)

        x = x.transpose(-1, -2)

        x = self.final_conv(x)

        return x
    
class Mixer(nn.Module):
    def __init__(self, device, mixer_path):
        
        super(Mixer, self).__init__()
        
        self.linear = nn.Linear((dim_s+1)*2, dim_s*2, bias=False)
        
        self.load_state_dict(
            torch.load(mixer_path, map_location=device)
        )

    def forward(self, x):
        x = x.reshape(1,(dim_s+1)*2,-1).transpose(-1,-2)
        x = self.linear(x)
        return x.transpose(-1,-2).reshape(dim_s,2,-1)