Spaces:
Runtime error
Runtime error
File size: 15,957 Bytes
dfc1efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# Created on 2018/12
# Author: Kaituo XU
# Modified on 2019/11 by Alexandre Defossez, added support for multiple output channels
# Here is the original license:
# The MIT License (MIT)
#
# Copyright (c) 2018 Kaituo XU
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils import capture_init
EPS = 1e-8
def overlap_and_add(signal, frame_step):
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes,
device=signal.device).unfold(0, subframes_per_frame, subframe_step)
frame = frame.long() # signal may in GPU or CPU
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
class ConvTasNet(nn.Module):
@capture_init
def __init__(self,
N=256,
L=20,
B=256,
H=512,
P=3,
X=8,
R=4,
C=4,
audio_channels=1,
samplerate=44100,
norm_type="gLN",
causal=False,
mask_nonlinear='relu'):
"""
Args:
N: Number of filters in autoencoder
L: Length of the filters (in samples)
B: Number of channels in bottleneck 1 × 1-conv block
H: Number of channels in convolutional blocks
P: Kernel size in convolutional blocks
X: Number of convolutional blocks in each repeat
R: Number of repeats
C: Number of speakers
norm_type: BN, gLN, cLN
causal: causal or non-causal
mask_nonlinear: use which non-linear function to generate mask
"""
super(ConvTasNet, self).__init__()
# Hyper-parameter
self.N, self.L, self.B, self.H, self.P, self.X, self.R, self.C = N, L, B, H, P, X, R, C
self.norm_type = norm_type
self.causal = causal
self.mask_nonlinear = mask_nonlinear
self.audio_channels = audio_channels
self.samplerate = samplerate
# Components
self.encoder = Encoder(L, N, audio_channels)
self.separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type, causal, mask_nonlinear)
self.decoder = Decoder(N, L, audio_channels)
# init
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_normal_(p)
def valid_length(self, length):
return length
def forward(self, mixture):
"""
Args:
mixture: [M, T], M is batch size, T is #samples
Returns:
est_source: [M, C, T]
"""
mixture_w = self.encoder(mixture)
est_mask = self.separator(mixture_w)
est_source = self.decoder(mixture_w, est_mask)
# T changed after conv1d in encoder, fix it here
T_origin = mixture.size(-1)
T_conv = est_source.size(-1)
est_source = F.pad(est_source, (0, T_origin - T_conv))
return est_source
class Encoder(nn.Module):
"""Estimation of the nonnegative mixture weight by a 1-D conv layer.
"""
def __init__(self, L, N, audio_channels):
super(Encoder, self).__init__()
# Hyper-parameter
self.L, self.N = L, N
# Components
# 50% overlap
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=L // 2, bias=False)
def forward(self, mixture):
"""
Args:
mixture: [M, T], M is batch size, T is #samples
Returns:
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
"""
mixture_w = F.relu(self.conv1d_U(mixture)) # [M, N, K]
return mixture_w
class Decoder(nn.Module):
def __init__(self, N, L, audio_channels):
super(Decoder, self).__init__()
# Hyper-parameter
self.N, self.L = N, L
self.audio_channels = audio_channels
# Components
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False)
def forward(self, mixture_w, est_mask):
"""
Args:
mixture_w: [M, N, K]
est_mask: [M, C, N, K]
Returns:
est_source: [M, C, T]
"""
# D = W * M
source_w = torch.unsqueeze(mixture_w, 1) * est_mask # [M, C, N, K]
source_w = torch.transpose(source_w, 2, 3) # [M, C, K, N]
# S = DV
est_source = self.basis_signals(source_w) # [M, C, K, ac * L]
m, c, k, _ = est_source.size()
est_source = est_source.view(m, c, k, self.audio_channels, -1).transpose(2, 3).contiguous()
est_source = overlap_and_add(est_source, self.L // 2) # M x C x ac x T
return est_source
class TemporalConvNet(nn.Module):
def __init__(self, N, B, H, P, X, R, C, norm_type="gLN", causal=False, mask_nonlinear='relu'):
"""
Args:
N: Number of filters in autoencoder
B: Number of channels in bottleneck 1 × 1-conv block
H: Number of channels in convolutional blocks
P: Kernel size in convolutional blocks
X: Number of convolutional blocks in each repeat
R: Number of repeats
C: Number of speakers
norm_type: BN, gLN, cLN
causal: causal or non-causal
mask_nonlinear: use which non-linear function to generate mask
"""
super(TemporalConvNet, self).__init__()
# Hyper-parameter
self.C = C
self.mask_nonlinear = mask_nonlinear
# Components
# [M, N, K] -> [M, N, K]
layer_norm = ChannelwiseLayerNorm(N)
# [M, N, K] -> [M, B, K]
bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False)
# [M, B, K] -> [M, B, K]
repeats = []
for r in range(R):
blocks = []
for x in range(X):
dilation = 2**x
padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2
blocks += [
TemporalBlock(B,
H,
P,
stride=1,
padding=padding,
dilation=dilation,
norm_type=norm_type,
causal=causal)
]
repeats += [nn.Sequential(*blocks)]
temporal_conv_net = nn.Sequential(*repeats)
# [M, B, K] -> [M, C*N, K]
mask_conv1x1 = nn.Conv1d(B, C * N, 1, bias=False)
# Put together
self.network = nn.Sequential(layer_norm, bottleneck_conv1x1, temporal_conv_net,
mask_conv1x1)
def forward(self, mixture_w):
"""
Keep this API same with TasNet
Args:
mixture_w: [M, N, K], M is batch size
returns:
est_mask: [M, C, N, K]
"""
M, N, K = mixture_w.size()
score = self.network(mixture_w) # [M, N, K] -> [M, C*N, K]
score = score.view(M, self.C, N, K) # [M, C*N, K] -> [M, C, N, K]
if self.mask_nonlinear == 'softmax':
est_mask = F.softmax(score, dim=1)
elif self.mask_nonlinear == 'relu':
est_mask = F.relu(score)
else:
raise ValueError("Unsupported mask non-linear function")
return est_mask
class TemporalBlock(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
norm_type="gLN",
causal=False):
super(TemporalBlock, self).__init__()
# [M, B, K] -> [M, H, K]
conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False)
prelu = nn.PReLU()
norm = chose_norm(norm_type, out_channels)
# [M, H, K] -> [M, B, K]
dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, stride, padding,
dilation, norm_type, causal)
# Put together
self.net = nn.Sequential(conv1x1, prelu, norm, dsconv)
def forward(self, x):
"""
Args:
x: [M, B, K]
Returns:
[M, B, K]
"""
residual = x
out = self.net(x)
# TODO: when P = 3 here works fine, but when P = 2 maybe need to pad?
return out + residual # look like w/o F.relu is better than w/ F.relu
# return F.relu(out + residual)
class DepthwiseSeparableConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
norm_type="gLN",
causal=False):
super(DepthwiseSeparableConv, self).__init__()
# Use `groups` option to implement depthwise convolution
# [M, H, K] -> [M, H, K]
depthwise_conv = nn.Conv1d(in_channels,
in_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=False)
if causal:
chomp = Chomp1d(padding)
prelu = nn.PReLU()
norm = chose_norm(norm_type, in_channels)
# [M, H, K] -> [M, B, K]
pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False)
# Put together
if causal:
self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, pointwise_conv)
else:
self.net = nn.Sequential(depthwise_conv, prelu, norm, pointwise_conv)
def forward(self, x):
"""
Args:
x: [M, H, K]
Returns:
result: [M, B, K]
"""
return self.net(x)
class Chomp1d(nn.Module):
"""To ensure the output length is the same as the input.
"""
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
"""
Args:
x: [M, H, Kpad]
Returns:
[M, H, K]
"""
return x[:, :, :-self.chomp_size].contiguous()
def chose_norm(norm_type, channel_size):
"""The input of normlization will be (M, C, K), where M is batch size,
C is channel size and K is sequence length.
"""
if norm_type == "gLN":
return GlobalLayerNorm(channel_size)
elif norm_type == "cLN":
return ChannelwiseLayerNorm(channel_size)
elif norm_type == "id":
return nn.Identity()
else: # norm_type == "BN":
# Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics
# along M and K, so this BN usage is right.
return nn.BatchNorm1d(channel_size)
# TODO: Use nn.LayerNorm to impl cLN to speed up
class ChannelwiseLayerNorm(nn.Module):
"""Channel-wise Layer Normalization (cLN)"""
def __init__(self, channel_size):
super(ChannelwiseLayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
self.reset_parameters()
def reset_parameters(self):
self.gamma.data.fill_(1)
self.beta.data.zero_()
def forward(self, y):
"""
Args:
y: [M, N, K], M is batch size, N is channel size, K is length
Returns:
cLN_y: [M, N, K]
"""
mean = torch.mean(y, dim=1, keepdim=True) # [M, 1, K]
var = torch.var(y, dim=1, keepdim=True, unbiased=False) # [M, 1, K]
cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
return cLN_y
class GlobalLayerNorm(nn.Module):
"""Global Layer Normalization (gLN)"""
def __init__(self, channel_size):
super(GlobalLayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
self.reset_parameters()
def reset_parameters(self):
self.gamma.data.fill_(1)
self.beta.data.zero_()
def forward(self, y):
"""
Args:
y: [M, N, K], M is batch size, N is channel size, K is length
Returns:
gLN_y: [M, N, K]
"""
# TODO: in torch 1.0, torch.mean() support dim list
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) # [M, 1, 1]
var = (torch.pow(y - mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
return gLN_y
if __name__ == "__main__":
torch.manual_seed(123)
M, N, L, T = 2, 3, 4, 12
K = 2 * T // L - 1
B, H, P, X, R, C, norm_type, causal = 2, 3, 3, 3, 2, 2, "gLN", False
mixture = torch.randint(3, (M, T))
# test Encoder
encoder = Encoder(L, N)
encoder.conv1d_U.weight.data = torch.randint(2, encoder.conv1d_U.weight.size())
mixture_w = encoder(mixture)
print('mixture', mixture)
print('U', encoder.conv1d_U.weight)
print('mixture_w', mixture_w)
print('mixture_w size', mixture_w.size())
# test TemporalConvNet
separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type=norm_type, causal=causal)
est_mask = separator(mixture_w)
print('est_mask', est_mask)
# test Decoder
decoder = Decoder(N, L)
est_mask = torch.randint(2, (B, K, C, N))
est_source = decoder(mixture_w, est_mask)
print('est_source', est_source)
# test Conv-TasNet
conv_tasnet = ConvTasNet(N, L, B, H, P, X, R, C, norm_type=norm_type)
est_source = conv_tasnet(mixture)
print('est_source', est_source)
print('est_source size', est_source.size())
|