Spaces:
Paused
Paused
Delete turbo_edit
Browse files
turbo_edit/run_configs/noise_shift_3_steps.yaml
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
breakdown: "x_t_hat_c"
|
2 |
-
cross_r: 0.9
|
3 |
-
eta_reconstruct: 1
|
4 |
-
eta_retrieve: 1
|
5 |
-
max_norm_zs: [-1, -1, 15.5]
|
6 |
-
model: "stabilityai/sdxl-turbo"
|
7 |
-
noise_shift_delta: 1
|
8 |
-
noise_timesteps: [599, 299, 0]
|
9 |
-
timesteps: [799, 499, 199]
|
10 |
-
num_steps_inversion: 5
|
11 |
-
step_start: 1
|
12 |
-
real_cfg_scale: 0
|
13 |
-
real_cfg_scale_save: 0
|
14 |
-
scheduler_type: "ddpm"
|
15 |
-
seed: 2
|
16 |
-
self_r: 0.5
|
17 |
-
ws1: 1.5
|
18 |
-
ws2: 1
|
19 |
-
clean_step_timestep: 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
turbo_edit/run_configs/noise_shift_guidance_1_5.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
breakdown: "x_t_hat_c"
|
2 |
-
cross_r: 0.9
|
3 |
-
eta: 1
|
4 |
-
max_norm_zs: [-1, -1, -1, 15.5]
|
5 |
-
model: "stabilityai/sdxl-turbo"
|
6 |
-
noise_shift_delta: 1
|
7 |
-
noise_timesteps: null
|
8 |
-
num_steps_inversion: 5
|
9 |
-
step_start: 1
|
10 |
-
real_cfg_scale: 0
|
11 |
-
real_cfg_scale_save: 0
|
12 |
-
scheduler_type: "ddpm"
|
13 |
-
seed: 2
|
14 |
-
self_r: 0.5
|
15 |
-
timesteps: null
|
16 |
-
ws1: 1.5
|
17 |
-
ws2: 1
|
18 |
-
clean_step_timestep: 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
turbo_edit/utils.py
DELETED
@@ -1,1357 +0,0 @@
|
|
1 |
-
import itertools
|
2 |
-
from typing import List, Optional, Union
|
3 |
-
import PIL
|
4 |
-
import PIL.Image
|
5 |
-
import torch
|
6 |
-
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
|
7 |
-
from diffusers.utils import make_image_grid
|
8 |
-
from PIL import Image, ImageDraw, ImageFont
|
9 |
-
import os
|
10 |
-
from diffusers.utils import (
|
11 |
-
logging,
|
12 |
-
USE_PEFT_BACKEND,
|
13 |
-
scale_lora_layers,
|
14 |
-
unscale_lora_layers,
|
15 |
-
)
|
16 |
-
from diffusers.loaders import (
|
17 |
-
StableDiffusionXLLoraLoaderMixin,
|
18 |
-
)
|
19 |
-
from diffusers.image_processor import VaeImageProcessor
|
20 |
-
|
21 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
22 |
-
|
23 |
-
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
24 |
-
from diffusers import DiffusionPipeline
|
25 |
-
|
26 |
-
|
27 |
-
VECTOR_DATA_FOLDER = "vector_data"
|
28 |
-
VECTOR_DATA_DICT = "vector_data"
|
29 |
-
|
30 |
-
|
31 |
-
def encode_image(image: PIL.Image, pipe: DiffusionPipeline):
|
32 |
-
pipe.image_processor: VaeImageProcessor = pipe.image_processor # type: ignore
|
33 |
-
image = pipe.image_processor.pil_to_numpy(image)
|
34 |
-
image = pipe.image_processor.numpy_to_pt(image)
|
35 |
-
image = image.to(pipe.device)
|
36 |
-
return (
|
37 |
-
pipe.vae.encode(
|
38 |
-
pipe.image_processor.preprocess(image),
|
39 |
-
).latent_dist.mode()
|
40 |
-
* pipe.vae.config.scaling_factor
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
def decode_latents(latent, pipe):
|
45 |
-
latent_img = pipe.vae.decode(
|
46 |
-
latent / pipe.vae.config.scaling_factor, return_dict=False
|
47 |
-
)[0]
|
48 |
-
return pipe.image_processor.postprocess(latent_img, output_type="pil")
|
49 |
-
|
50 |
-
|
51 |
-
def get_device(argv, args=None):
|
52 |
-
import sys
|
53 |
-
|
54 |
-
def debugger_is_active():
|
55 |
-
return hasattr(sys, "gettrace") and sys.gettrace() is not None
|
56 |
-
|
57 |
-
if args:
|
58 |
-
return (
|
59 |
-
torch.device("cuda")
|
60 |
-
if (torch.cuda.is_available() and not debugger_is_active())
|
61 |
-
and not args.force_use_cpu
|
62 |
-
else torch.device("cpu")
|
63 |
-
)
|
64 |
-
|
65 |
-
return (
|
66 |
-
torch.device("cuda")
|
67 |
-
if (torch.cuda.is_available() and not debugger_is_active())
|
68 |
-
and not "cpu" in set(argv[1:])
|
69 |
-
else torch.device("cpu")
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
def deterministic_ddim_step(
|
74 |
-
model_output: torch.FloatTensor,
|
75 |
-
timestep: int,
|
76 |
-
sample: torch.FloatTensor,
|
77 |
-
eta: float = 0.0,
|
78 |
-
use_clipped_model_output: bool = False,
|
79 |
-
generator=None,
|
80 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
81 |
-
return_dict: bool = True,
|
82 |
-
scheduler=None,
|
83 |
-
):
|
84 |
-
|
85 |
-
if scheduler.num_inference_steps is None:
|
86 |
-
raise ValueError(
|
87 |
-
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
88 |
-
)
|
89 |
-
|
90 |
-
prev_timestep = (
|
91 |
-
timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
|
92 |
-
)
|
93 |
-
|
94 |
-
# 2. compute alphas, betas
|
95 |
-
alpha_prod_t = scheduler.alphas_cumprod[timestep]
|
96 |
-
alpha_prod_t_prev = (
|
97 |
-
scheduler.alphas_cumprod[prev_timestep]
|
98 |
-
if prev_timestep >= 0
|
99 |
-
else scheduler.final_alpha_cumprod
|
100 |
-
)
|
101 |
-
|
102 |
-
beta_prod_t = 1 - alpha_prod_t
|
103 |
-
|
104 |
-
if scheduler.config.prediction_type == "epsilon":
|
105 |
-
pred_original_sample = (
|
106 |
-
sample - beta_prod_t ** (0.5) * model_output
|
107 |
-
) / alpha_prod_t ** (0.5)
|
108 |
-
pred_epsilon = model_output
|
109 |
-
elif scheduler.config.prediction_type == "sample":
|
110 |
-
pred_original_sample = model_output
|
111 |
-
pred_epsilon = (
|
112 |
-
sample - alpha_prod_t ** (0.5) * pred_original_sample
|
113 |
-
) / beta_prod_t ** (0.5)
|
114 |
-
elif scheduler.config.prediction_type == "v_prediction":
|
115 |
-
pred_original_sample = (alpha_prod_t**0.5) * sample - (
|
116 |
-
beta_prod_t**0.5
|
117 |
-
) * model_output
|
118 |
-
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
119 |
-
else:
|
120 |
-
raise ValueError(
|
121 |
-
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
122 |
-
" `v_prediction`"
|
123 |
-
)
|
124 |
-
|
125 |
-
# 4. Clip or threshold "predicted x_0"
|
126 |
-
if scheduler.config.thresholding:
|
127 |
-
pred_original_sample = scheduler._threshold_sample(pred_original_sample)
|
128 |
-
elif scheduler.config.clip_sample:
|
129 |
-
pred_original_sample = pred_original_sample.clamp(
|
130 |
-
-scheduler.config.clip_sample_range,
|
131 |
-
scheduler.config.clip_sample_range,
|
132 |
-
)
|
133 |
-
|
134 |
-
# 5. compute variance: "sigma_t(ฮท)" -> see formula (16)
|
135 |
-
# ฯ_t = sqrt((1 โ ฮฑ_tโ1)/(1 โ ฮฑ_t)) * sqrt(1 โ ฮฑ_t/ฮฑ_tโ1)
|
136 |
-
variance = scheduler._get_variance(timestep, prev_timestep)
|
137 |
-
std_dev_t = eta * variance ** (0.5)
|
138 |
-
|
139 |
-
if use_clipped_model_output:
|
140 |
-
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
|
141 |
-
pred_epsilon = (
|
142 |
-
sample - alpha_prod_t ** (0.5) * pred_original_sample
|
143 |
-
) / beta_prod_t ** (0.5)
|
144 |
-
|
145 |
-
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
146 |
-
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (
|
147 |
-
0.5
|
148 |
-
) * pred_epsilon
|
149 |
-
|
150 |
-
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
151 |
-
prev_sample = (
|
152 |
-
alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
153 |
-
)
|
154 |
-
return prev_sample
|
155 |
-
|
156 |
-
|
157 |
-
def deterministic_euler_step(
|
158 |
-
model_output: torch.FloatTensor,
|
159 |
-
timestep: Union[float, torch.FloatTensor],
|
160 |
-
sample: torch.FloatTensor,
|
161 |
-
eta,
|
162 |
-
use_clipped_model_output,
|
163 |
-
generator,
|
164 |
-
variance_noise,
|
165 |
-
return_dict,
|
166 |
-
scheduler,
|
167 |
-
):
|
168 |
-
"""
|
169 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
170 |
-
process from the learned model outputs (most often the predicted noise).
|
171 |
-
|
172 |
-
Args:
|
173 |
-
model_output (`torch.FloatTensor`):
|
174 |
-
The direct output from learned diffusion model.
|
175 |
-
timestep (`float`):
|
176 |
-
The current discrete timestep in the diffusion chain.
|
177 |
-
sample (`torch.FloatTensor`):
|
178 |
-
A current instance of a sample created by the diffusion process.
|
179 |
-
generator (`torch.Generator`, *optional*):
|
180 |
-
A random number generator.
|
181 |
-
return_dict (`bool`):
|
182 |
-
Whether or not to return a
|
183 |
-
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
184 |
-
|
185 |
-
Returns:
|
186 |
-
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
187 |
-
If return_dict is `True`,
|
188 |
-
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
189 |
-
otherwise a tuple is returned where the first element is the sample tensor.
|
190 |
-
|
191 |
-
"""
|
192 |
-
|
193 |
-
if (
|
194 |
-
isinstance(timestep, int)
|
195 |
-
or isinstance(timestep, torch.IntTensor)
|
196 |
-
or isinstance(timestep, torch.LongTensor)
|
197 |
-
):
|
198 |
-
raise ValueError(
|
199 |
-
(
|
200 |
-
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
201 |
-
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
202 |
-
" one of the `scheduler.timesteps` as a timestep."
|
203 |
-
),
|
204 |
-
)
|
205 |
-
|
206 |
-
if scheduler.step_index is None:
|
207 |
-
scheduler._init_step_index(timestep)
|
208 |
-
|
209 |
-
sigma = scheduler.sigmas[scheduler.step_index]
|
210 |
-
|
211 |
-
# Upcast to avoid precision issues when computing prev_sample
|
212 |
-
sample = sample.to(torch.float32)
|
213 |
-
|
214 |
-
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
215 |
-
if scheduler.config.prediction_type == "epsilon":
|
216 |
-
pred_original_sample = sample - sigma * model_output
|
217 |
-
elif scheduler.config.prediction_type == "v_prediction":
|
218 |
-
# * c_out + input * c_skip
|
219 |
-
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (
|
220 |
-
sample / (sigma**2 + 1)
|
221 |
-
)
|
222 |
-
elif scheduler.config.prediction_type == "sample":
|
223 |
-
raise NotImplementedError("prediction_type not implemented yet: sample")
|
224 |
-
else:
|
225 |
-
raise ValueError(
|
226 |
-
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
227 |
-
)
|
228 |
-
|
229 |
-
sigma_from = scheduler.sigmas[scheduler.step_index]
|
230 |
-
sigma_to = scheduler.sigmas[scheduler.step_index + 1]
|
231 |
-
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
232 |
-
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
233 |
-
|
234 |
-
# 2. Convert to an ODE derivative
|
235 |
-
derivative = (sample - pred_original_sample) / sigma
|
236 |
-
|
237 |
-
dt = sigma_down - sigma
|
238 |
-
|
239 |
-
prev_sample = sample + derivative * dt
|
240 |
-
|
241 |
-
# Cast sample back to model compatible dtype
|
242 |
-
prev_sample = prev_sample.to(model_output.dtype)
|
243 |
-
|
244 |
-
# upon completion increase step index by one
|
245 |
-
scheduler._step_index += 1
|
246 |
-
|
247 |
-
return prev_sample
|
248 |
-
|
249 |
-
|
250 |
-
def deterministic_non_ancestral_euler_step(
|
251 |
-
model_output: torch.FloatTensor,
|
252 |
-
timestep: Union[float, torch.FloatTensor],
|
253 |
-
sample: torch.FloatTensor,
|
254 |
-
eta: float = 0.0,
|
255 |
-
use_clipped_model_output: bool = False,
|
256 |
-
s_churn: float = 0.0,
|
257 |
-
s_tmin: float = 0.0,
|
258 |
-
s_tmax: float = float("inf"),
|
259 |
-
s_noise: float = 1.0,
|
260 |
-
generator: Optional[torch.Generator] = None,
|
261 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
262 |
-
return_dict: bool = True,
|
263 |
-
scheduler=None,
|
264 |
-
):
|
265 |
-
"""
|
266 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
267 |
-
process from the learned model outputs (most often the predicted noise).
|
268 |
-
|
269 |
-
Args:
|
270 |
-
model_output (`torch.FloatTensor`):
|
271 |
-
The direct output from learned diffusion model.
|
272 |
-
timestep (`float`):
|
273 |
-
The current discrete timestep in the diffusion chain.
|
274 |
-
sample (`torch.FloatTensor`):
|
275 |
-
A current instance of a sample created by the diffusion process.
|
276 |
-
s_churn (`float`):
|
277 |
-
s_tmin (`float`):
|
278 |
-
s_tmax (`float`):
|
279 |
-
s_noise (`float`, defaults to 1.0):
|
280 |
-
Scaling factor for noise added to the sample.
|
281 |
-
generator (`torch.Generator`, *optional*):
|
282 |
-
A random number generator.
|
283 |
-
return_dict (`bool`):
|
284 |
-
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
285 |
-
tuple.
|
286 |
-
|
287 |
-
Returns:
|
288 |
-
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
289 |
-
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
290 |
-
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
291 |
-
"""
|
292 |
-
|
293 |
-
if (
|
294 |
-
isinstance(timestep, int)
|
295 |
-
or isinstance(timestep, torch.IntTensor)
|
296 |
-
or isinstance(timestep, torch.LongTensor)
|
297 |
-
):
|
298 |
-
raise ValueError(
|
299 |
-
(
|
300 |
-
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
301 |
-
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
302 |
-
" one of the `scheduler.timesteps` as a timestep."
|
303 |
-
),
|
304 |
-
)
|
305 |
-
|
306 |
-
if not scheduler.is_scale_input_called:
|
307 |
-
logger.warning(
|
308 |
-
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
309 |
-
"See `StableDiffusionPipeline` for a usage example."
|
310 |
-
)
|
311 |
-
|
312 |
-
if scheduler.step_index is None:
|
313 |
-
scheduler._init_step_index(timestep)
|
314 |
-
|
315 |
-
# Upcast to avoid precision issues when computing prev_sample
|
316 |
-
sample = sample.to(torch.float32)
|
317 |
-
|
318 |
-
sigma = scheduler.sigmas[scheduler.step_index]
|
319 |
-
|
320 |
-
gamma = (
|
321 |
-
min(s_churn / (len(scheduler.sigmas) - 1), 2**0.5 - 1)
|
322 |
-
if s_tmin <= sigma <= s_tmax
|
323 |
-
else 0.0
|
324 |
-
)
|
325 |
-
|
326 |
-
sigma_hat = sigma * (gamma + 1)
|
327 |
-
|
328 |
-
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
329 |
-
# NOTE: "original_sample" should not be an expected prediction_type but is left in for
|
330 |
-
# backwards compatibility
|
331 |
-
if (
|
332 |
-
scheduler.config.prediction_type == "original_sample"
|
333 |
-
or scheduler.config.prediction_type == "sample"
|
334 |
-
):
|
335 |
-
pred_original_sample = model_output
|
336 |
-
elif scheduler.config.prediction_type == "epsilon":
|
337 |
-
pred_original_sample = sample - sigma_hat * model_output
|
338 |
-
elif scheduler.config.prediction_type == "v_prediction":
|
339 |
-
# denoised = model_output * c_out + input * c_skip
|
340 |
-
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (
|
341 |
-
sample / (sigma**2 + 1)
|
342 |
-
)
|
343 |
-
else:
|
344 |
-
raise ValueError(
|
345 |
-
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
346 |
-
)
|
347 |
-
|
348 |
-
# 2. Convert to an ODE derivative
|
349 |
-
derivative = (sample - pred_original_sample) / sigma_hat
|
350 |
-
|
351 |
-
dt = scheduler.sigmas[scheduler.step_index + 1] - sigma_hat
|
352 |
-
|
353 |
-
prev_sample = sample + derivative * dt
|
354 |
-
|
355 |
-
# Cast sample back to model compatible dtype
|
356 |
-
prev_sample = prev_sample.to(model_output.dtype)
|
357 |
-
|
358 |
-
# upon completion increase step index by one
|
359 |
-
scheduler._step_index += 1
|
360 |
-
|
361 |
-
return prev_sample
|
362 |
-
|
363 |
-
|
364 |
-
def deterministic_ddpm_step(
|
365 |
-
model_output: torch.FloatTensor,
|
366 |
-
timestep: Union[float, torch.FloatTensor],
|
367 |
-
sample: torch.FloatTensor,
|
368 |
-
eta,
|
369 |
-
use_clipped_model_output,
|
370 |
-
generator,
|
371 |
-
variance_noise,
|
372 |
-
return_dict,
|
373 |
-
scheduler,
|
374 |
-
):
|
375 |
-
"""
|
376 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
377 |
-
process from the learned model outputs (most often the predicted noise).
|
378 |
-
|
379 |
-
Args:
|
380 |
-
model_output (`torch.FloatTensor`):
|
381 |
-
The direct output from learned diffusion model.
|
382 |
-
timestep (`float`):
|
383 |
-
The current discrete timestep in the diffusion chain.
|
384 |
-
sample (`torch.FloatTensor`):
|
385 |
-
A current instance of a sample created by the diffusion process.
|
386 |
-
generator (`torch.Generator`, *optional*):
|
387 |
-
A random number generator.
|
388 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
389 |
-
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
|
390 |
-
|
391 |
-
Returns:
|
392 |
-
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
|
393 |
-
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
|
394 |
-
tuple is returned where the first element is the sample tensor.
|
395 |
-
|
396 |
-
"""
|
397 |
-
t = timestep
|
398 |
-
|
399 |
-
prev_t = scheduler.previous_timestep(t)
|
400 |
-
|
401 |
-
if model_output.shape[1] == sample.shape[1] * 2 and scheduler.variance_type in [
|
402 |
-
"learned",
|
403 |
-
"learned_range",
|
404 |
-
]:
|
405 |
-
model_output, predicted_variance = torch.split(
|
406 |
-
model_output, sample.shape[1], dim=1
|
407 |
-
)
|
408 |
-
else:
|
409 |
-
predicted_variance = None
|
410 |
-
|
411 |
-
# 1. compute alphas, betas
|
412 |
-
alpha_prod_t = scheduler.alphas_cumprod[t]
|
413 |
-
alpha_prod_t_prev = (
|
414 |
-
scheduler.alphas_cumprod[prev_t] if prev_t >= 0 else scheduler.one
|
415 |
-
)
|
416 |
-
beta_prod_t = 1 - alpha_prod_t
|
417 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
418 |
-
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
419 |
-
current_beta_t = 1 - current_alpha_t
|
420 |
-
|
421 |
-
# 2. compute predicted original sample from predicted noise also called
|
422 |
-
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
423 |
-
if scheduler.config.prediction_type == "epsilon":
|
424 |
-
pred_original_sample = (
|
425 |
-
sample - beta_prod_t ** (0.5) * model_output
|
426 |
-
) / alpha_prod_t ** (0.5)
|
427 |
-
elif scheduler.config.prediction_type == "sample":
|
428 |
-
pred_original_sample = model_output
|
429 |
-
elif scheduler.config.prediction_type == "v_prediction":
|
430 |
-
pred_original_sample = (alpha_prod_t**0.5) * sample - (
|
431 |
-
beta_prod_t**0.5
|
432 |
-
) * model_output
|
433 |
-
else:
|
434 |
-
raise ValueError(
|
435 |
-
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample` or"
|
436 |
-
" `v_prediction` for the DDPMScheduler."
|
437 |
-
)
|
438 |
-
|
439 |
-
# 3. Clip or threshold "predicted x_0"
|
440 |
-
if scheduler.config.thresholding:
|
441 |
-
pred_original_sample = scheduler._threshold_sample(pred_original_sample)
|
442 |
-
elif scheduler.config.clip_sample:
|
443 |
-
pred_original_sample = pred_original_sample.clamp(
|
444 |
-
-scheduler.config.clip_sample_range, scheduler.config.clip_sample_range
|
445 |
-
)
|
446 |
-
|
447 |
-
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
448 |
-
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
449 |
-
pred_original_sample_coeff = (
|
450 |
-
alpha_prod_t_prev ** (0.5) * current_beta_t
|
451 |
-
) / beta_prod_t
|
452 |
-
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
453 |
-
|
454 |
-
# 5. Compute predicted previous sample ยต_t
|
455 |
-
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
456 |
-
pred_prev_sample = (
|
457 |
-
pred_original_sample_coeff * pred_original_sample
|
458 |
-
+ current_sample_coeff * sample
|
459 |
-
)
|
460 |
-
|
461 |
-
return pred_prev_sample
|
462 |
-
|
463 |
-
|
464 |
-
def normalize(
|
465 |
-
z_t,
|
466 |
-
i,
|
467 |
-
max_norm_zs,
|
468 |
-
):
|
469 |
-
max_norm = max_norm_zs[i]
|
470 |
-
if max_norm < 0:
|
471 |
-
return z_t, 1
|
472 |
-
|
473 |
-
norm = torch.norm(z_t)
|
474 |
-
if norm < max_norm:
|
475 |
-
return z_t, 1
|
476 |
-
|
477 |
-
coeff = max_norm / norm
|
478 |
-
z_t = z_t * coeff
|
479 |
-
return z_t, coeff
|
480 |
-
|
481 |
-
|
482 |
-
def find_index(timesteps, timestep):
|
483 |
-
for i, t in enumerate(timesteps):
|
484 |
-
if t == timestep:
|
485 |
-
return i
|
486 |
-
return -1
|
487 |
-
|
488 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
489 |
-
map_timpstep_to_index = {
|
490 |
-
torch.tensor(799): 0,
|
491 |
-
torch.tensor(599): 1,
|
492 |
-
torch.tensor(399): 2,
|
493 |
-
torch.tensor(199): 3,
|
494 |
-
torch.tensor(799, device=device): 0,
|
495 |
-
torch.tensor(599, device=device): 1,
|
496 |
-
torch.tensor(399, device=device): 2,
|
497 |
-
torch.tensor(199, device=device): 3,
|
498 |
-
}
|
499 |
-
|
500 |
-
def step_save_latents(
|
501 |
-
self,
|
502 |
-
model_output: torch.FloatTensor,
|
503 |
-
timestep: int,
|
504 |
-
sample: torch.FloatTensor,
|
505 |
-
eta: float = 0.0,
|
506 |
-
use_clipped_model_output: bool = False,
|
507 |
-
generator=None,
|
508 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
509 |
-
return_dict: bool = True,
|
510 |
-
):
|
511 |
-
# print(self._save_timesteps)
|
512 |
-
# timestep_index = map_timpstep_to_index[timestep]
|
513 |
-
# timestep_index = ((self._save_timesteps == timestep).nonzero(as_tuple=True)[0]).item()
|
514 |
-
timestep_index = self._save_timesteps.index(timestep) if not self.clean_step_run else -1
|
515 |
-
next_timestep_index = timestep_index + 1 if not self.clean_step_run else -1
|
516 |
-
u_hat_t = self.step_function(
|
517 |
-
model_output=model_output,
|
518 |
-
timestep=timestep,
|
519 |
-
sample=sample,
|
520 |
-
eta=eta,
|
521 |
-
use_clipped_model_output=use_clipped_model_output,
|
522 |
-
generator=generator,
|
523 |
-
variance_noise=variance_noise,
|
524 |
-
return_dict=False,
|
525 |
-
scheduler=self,
|
526 |
-
)
|
527 |
-
|
528 |
-
x_t_minus_1 = self.x_ts[next_timestep_index]
|
529 |
-
self.x_ts_c_hat.append(u_hat_t)
|
530 |
-
|
531 |
-
z_t = x_t_minus_1 - u_hat_t
|
532 |
-
self.latents.append(z_t)
|
533 |
-
|
534 |
-
z_t, _ = normalize(z_t, timestep_index, self._config.max_norm_zs)
|
535 |
-
|
536 |
-
x_t_minus_1_predicted = u_hat_t + z_t
|
537 |
-
|
538 |
-
if not return_dict:
|
539 |
-
return (x_t_minus_1_predicted,)
|
540 |
-
|
541 |
-
return DDIMSchedulerOutput(prev_sample=x_t_minus_1, pred_original_sample=None)
|
542 |
-
|
543 |
-
|
544 |
-
def step_use_latents(
|
545 |
-
self,
|
546 |
-
model_output: torch.FloatTensor,
|
547 |
-
timestep: int,
|
548 |
-
sample: torch.FloatTensor,
|
549 |
-
eta: float = 0.0,
|
550 |
-
use_clipped_model_output: bool = False,
|
551 |
-
generator=None,
|
552 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
553 |
-
return_dict: bool = True,
|
554 |
-
):
|
555 |
-
# timestep_index = ((self._save_timesteps == timestep).nonzero(as_tuple=True)[0]).item()
|
556 |
-
timestep_index = self._timesteps.index(timestep) if not self.clean_step_run else -1
|
557 |
-
next_timestep_index = (
|
558 |
-
timestep_index + 1 if not self.clean_step_run else -1
|
559 |
-
)
|
560 |
-
z_t = self.latents[next_timestep_index] # + 1 because latents[0] is X_T
|
561 |
-
|
562 |
-
_, normalize_coefficient = normalize(
|
563 |
-
z_t[0] if self._config.breakdown == "x_t_hat_c_with_zeros" else z_t,
|
564 |
-
timestep_index,
|
565 |
-
self._config.max_norm_zs,
|
566 |
-
)
|
567 |
-
|
568 |
-
if normalize_coefficient == 0:
|
569 |
-
eta = 0
|
570 |
-
|
571 |
-
# eta = normalize_coefficient
|
572 |
-
|
573 |
-
x_t_hat_c_hat = self.step_function(
|
574 |
-
model_output=model_output,
|
575 |
-
timestep=timestep,
|
576 |
-
sample=sample,
|
577 |
-
eta=eta,
|
578 |
-
use_clipped_model_output=use_clipped_model_output,
|
579 |
-
generator=generator,
|
580 |
-
variance_noise=variance_noise,
|
581 |
-
return_dict=False,
|
582 |
-
scheduler=self,
|
583 |
-
)
|
584 |
-
|
585 |
-
w1 = self._config.ws1[timestep_index]
|
586 |
-
w2 = self._config.ws2[timestep_index]
|
587 |
-
|
588 |
-
x_t_minus_1_exact = self.x_ts[next_timestep_index]
|
589 |
-
x_t_minus_1_exact = x_t_minus_1_exact.expand_as(x_t_hat_c_hat)
|
590 |
-
|
591 |
-
x_t_c_hat: torch.Tensor = self.x_ts_c_hat[next_timestep_index]
|
592 |
-
if self._config.breakdown == "x_t_c_hat":
|
593 |
-
raise NotImplementedError("breakdown x_t_c_hat not implemented yet")
|
594 |
-
|
595 |
-
# x_t_c_hat = x_t_c_hat.expand_as(x_t_hat_c_hat)
|
596 |
-
x_t_c = x_t_c_hat[0].expand_as(x_t_hat_c_hat)
|
597 |
-
|
598 |
-
# if self._config.breakdown == "x_t_c_hat":
|
599 |
-
# v1 = x_t_hat_c_hat - x_t_c_hat
|
600 |
-
# v2 = x_t_c_hat - x_t_c
|
601 |
-
if (
|
602 |
-
self._config.breakdown == "x_t_hat_c"
|
603 |
-
or self._config.breakdown == "x_t_hat_c_with_zeros"
|
604 |
-
):
|
605 |
-
zero_index_reconstruction = 1 if not self.time_measure_n else 0
|
606 |
-
edit_prompts_num = (
|
607 |
-
(model_output.size(0) - zero_index_reconstruction) // 3
|
608 |
-
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p
|
609 |
-
else (model_output.size(0) - zero_index_reconstruction) // 2
|
610 |
-
)
|
611 |
-
x_t_hat_c_indices = (zero_index_reconstruction, edit_prompts_num + zero_index_reconstruction)
|
612 |
-
edit_images_indices = (
|
613 |
-
edit_prompts_num + zero_index_reconstruction,
|
614 |
-
(
|
615 |
-
model_output.size(0)
|
616 |
-
if self._config.breakdown == "x_t_hat_c"
|
617 |
-
else zero_index_reconstruction + 2 * edit_prompts_num
|
618 |
-
),
|
619 |
-
)
|
620 |
-
x_t_hat_c = torch.zeros_like(x_t_hat_c_hat)
|
621 |
-
x_t_hat_c[edit_images_indices[0] : edit_images_indices[1]] = x_t_hat_c_hat[
|
622 |
-
x_t_hat_c_indices[0] : x_t_hat_c_indices[1]
|
623 |
-
]
|
624 |
-
v1 = x_t_hat_c_hat - x_t_hat_c
|
625 |
-
v2 = x_t_hat_c - normalize_coefficient * x_t_c
|
626 |
-
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p:
|
627 |
-
path = os.path.join(
|
628 |
-
self.folder_name,
|
629 |
-
VECTOR_DATA_FOLDER,
|
630 |
-
self.image_name,
|
631 |
-
)
|
632 |
-
if not hasattr(self, VECTOR_DATA_DICT):
|
633 |
-
os.makedirs(path, exist_ok=True)
|
634 |
-
self.vector_data = dict()
|
635 |
-
|
636 |
-
x_t_0 = x_t_c_hat[1]
|
637 |
-
empty_prompt_indices = (1 + 2 * edit_prompts_num, 1 + 3 * edit_prompts_num)
|
638 |
-
x_t_hat_0 = x_t_hat_c_hat[empty_prompt_indices[0] : empty_prompt_indices[1]]
|
639 |
-
|
640 |
-
self.vector_data[timestep.item()] = dict()
|
641 |
-
self.vector_data[timestep.item()]["x_t_hat_c"] = x_t_hat_c[
|
642 |
-
edit_images_indices[0] : edit_images_indices[1]
|
643 |
-
]
|
644 |
-
self.vector_data[timestep.item()]["x_t_hat_0"] = x_t_hat_0
|
645 |
-
self.vector_data[timestep.item()]["x_t_c"] = x_t_c[0].expand_as(x_t_hat_0)
|
646 |
-
self.vector_data[timestep.item()]["x_t_0"] = x_t_0.expand_as(x_t_hat_0)
|
647 |
-
self.vector_data[timestep.item()]["x_t_hat_c_hat"] = x_t_hat_c_hat[
|
648 |
-
edit_images_indices[0] : edit_images_indices[1]
|
649 |
-
]
|
650 |
-
self.vector_data[timestep.item()]["x_t_minus_1_noisy"] = x_t_minus_1_exact[
|
651 |
-
0
|
652 |
-
].expand_as(x_t_hat_0)
|
653 |
-
self.vector_data[timestep.item()]["x_t_minus_1_clean"] = self.x_0s[
|
654 |
-
next_timestep_index
|
655 |
-
].expand_as(x_t_hat_0)
|
656 |
-
|
657 |
-
else: # no breakdown
|
658 |
-
v1 = x_t_hat_c_hat - normalize_coefficient * x_t_c
|
659 |
-
v2 = 0
|
660 |
-
|
661 |
-
if self.save_intermediate_results and not self.p_to_p:
|
662 |
-
delta = v1 + v2
|
663 |
-
v1_plus_x0 = self.x_0s[next_timestep_index] + v1
|
664 |
-
v2_plus_x0 = self.x_0s[next_timestep_index] + v2
|
665 |
-
delta_plus_x0 = self.x_0s[next_timestep_index] + delta
|
666 |
-
|
667 |
-
v1_images = decode_latents(v1, self.pipe)
|
668 |
-
self.v1s_images.append(v1_images)
|
669 |
-
v2_images = (
|
670 |
-
decode_latents(v2, self.pipe)
|
671 |
-
if self._config.breakdown != "no_breakdown"
|
672 |
-
else [PIL.Image.new("RGB", (1, 1))]
|
673 |
-
)
|
674 |
-
self.v2s_images.append(v2_images)
|
675 |
-
delta_images = decode_latents(delta, self.pipe)
|
676 |
-
self.deltas_images.append(delta_images)
|
677 |
-
v1_plus_x0_images = decode_latents(v1_plus_x0, self.pipe)
|
678 |
-
self.v1_x0s.append(v1_plus_x0_images)
|
679 |
-
v2_plus_x0_images = (
|
680 |
-
decode_latents(v2_plus_x0, self.pipe)
|
681 |
-
if self._config.breakdown != "no_breakdown"
|
682 |
-
else [PIL.Image.new("RGB", (1, 1))]
|
683 |
-
)
|
684 |
-
self.v2_x0s.append(v2_plus_x0_images)
|
685 |
-
delta_plus_x0_images = decode_latents(delta_plus_x0, self.pipe)
|
686 |
-
self.deltas_x0s.append(delta_plus_x0_images)
|
687 |
-
|
688 |
-
# print(f"v1 norm: {torch.norm(v1, dim=0).mean()}")
|
689 |
-
# if self._config.breakdown != "no_breakdown":
|
690 |
-
# print(f"v2 norm: {torch.norm(v2, dim=0).mean()}")
|
691 |
-
# print(f"v sum norm: {torch.norm(v1 + v2, dim=0).mean()}")
|
692 |
-
|
693 |
-
x_t_minus_1 = normalize_coefficient * x_t_minus_1_exact + w1 * v1 + w2 * v2
|
694 |
-
|
695 |
-
if (
|
696 |
-
self._config.breakdown == "x_t_hat_c"
|
697 |
-
or self._config.breakdown == "x_t_hat_c_with_zeros"
|
698 |
-
):
|
699 |
-
x_t_minus_1[x_t_hat_c_indices[0] : x_t_hat_c_indices[1]] = x_t_minus_1[
|
700 |
-
edit_images_indices[0] : edit_images_indices[1]
|
701 |
-
] # update x_t_hat_c to be x_t_hat_c_hat
|
702 |
-
if self._config.breakdown == "x_t_hat_c_with_zeros" and not self.p_to_p:
|
703 |
-
x_t_minus_1[empty_prompt_indices[0] : empty_prompt_indices[1]] = (
|
704 |
-
x_t_minus_1[edit_images_indices[0] : edit_images_indices[1]]
|
705 |
-
)
|
706 |
-
self.vector_data[timestep.item()]["x_t_minus_1_edited"] = x_t_minus_1[
|
707 |
-
edit_images_indices[0] : edit_images_indices[1]
|
708 |
-
]
|
709 |
-
if timestep == self._timesteps[-1]:
|
710 |
-
torch.save(
|
711 |
-
self.vector_data,
|
712 |
-
os.path.join(
|
713 |
-
path,
|
714 |
-
f"{VECTOR_DATA_DICT}.pt",
|
715 |
-
),
|
716 |
-
)
|
717 |
-
# p_to_p_force_perfect_reconstruction
|
718 |
-
if not self.time_measure_n:
|
719 |
-
x_t_minus_1[0] = x_t_minus_1_exact[0]
|
720 |
-
|
721 |
-
if not return_dict:
|
722 |
-
return (x_t_minus_1,)
|
723 |
-
|
724 |
-
return DDIMSchedulerOutput(
|
725 |
-
prev_sample=x_t_minus_1,
|
726 |
-
pred_original_sample=None,
|
727 |
-
)
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
def get_ddpm_inversion_scheduler(
|
732 |
-
scheduler,
|
733 |
-
step_function,
|
734 |
-
config,
|
735 |
-
timesteps,
|
736 |
-
save_timesteps,
|
737 |
-
latents,
|
738 |
-
x_ts,
|
739 |
-
x_ts_c_hat,
|
740 |
-
save_intermediate_results,
|
741 |
-
pipe,
|
742 |
-
x_0,
|
743 |
-
v1s_images,
|
744 |
-
v2s_images,
|
745 |
-
deltas_images,
|
746 |
-
v1_x0s,
|
747 |
-
v2_x0s,
|
748 |
-
deltas_x0s,
|
749 |
-
folder_name,
|
750 |
-
image_name,
|
751 |
-
time_measure_n,
|
752 |
-
):
|
753 |
-
def step(
|
754 |
-
model_output: torch.FloatTensor,
|
755 |
-
timestep: int,
|
756 |
-
sample: torch.FloatTensor,
|
757 |
-
eta: float = 0.0,
|
758 |
-
use_clipped_model_output: bool = False,
|
759 |
-
generator=None,
|
760 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
761 |
-
return_dict: bool = True,
|
762 |
-
):
|
763 |
-
# if scheduler.is_save:
|
764 |
-
# start = timer()
|
765 |
-
res_inv = step_save_latents(
|
766 |
-
scheduler,
|
767 |
-
model_output[:1, :, :, :],
|
768 |
-
timestep,
|
769 |
-
sample[:1, :, :, :],
|
770 |
-
eta,
|
771 |
-
use_clipped_model_output,
|
772 |
-
generator,
|
773 |
-
variance_noise,
|
774 |
-
return_dict,
|
775 |
-
)
|
776 |
-
# end = timer()
|
777 |
-
# print(f"Run Time Inv: {end - start}")
|
778 |
-
|
779 |
-
res_inf = step_use_latents(
|
780 |
-
scheduler,
|
781 |
-
model_output[1:, :, :, :],
|
782 |
-
timestep,
|
783 |
-
sample[1:, :, :, :],
|
784 |
-
eta,
|
785 |
-
use_clipped_model_output,
|
786 |
-
generator,
|
787 |
-
variance_noise,
|
788 |
-
return_dict,
|
789 |
-
)
|
790 |
-
# res = res_inv
|
791 |
-
res = (torch.cat((res_inv[0], res_inf[0]), dim=0),)
|
792 |
-
return res
|
793 |
-
# return res
|
794 |
-
|
795 |
-
scheduler.step_function = step_function
|
796 |
-
scheduler.is_save = True
|
797 |
-
scheduler._timesteps = timesteps
|
798 |
-
scheduler._save_timesteps = save_timesteps if save_timesteps else timesteps
|
799 |
-
scheduler._config = config
|
800 |
-
scheduler.latents = latents
|
801 |
-
scheduler.x_ts = x_ts
|
802 |
-
scheduler.x_ts_c_hat = x_ts_c_hat
|
803 |
-
scheduler.step = step
|
804 |
-
scheduler.save_intermediate_results = save_intermediate_results
|
805 |
-
scheduler.pipe = pipe
|
806 |
-
scheduler.v1s_images = v1s_images
|
807 |
-
scheduler.v2s_images = v2s_images
|
808 |
-
scheduler.deltas_images = deltas_images
|
809 |
-
scheduler.v1_x0s = v1_x0s
|
810 |
-
scheduler.v2_x0s = v2_x0s
|
811 |
-
scheduler.deltas_x0s = deltas_x0s
|
812 |
-
scheduler.clean_step_run = False
|
813 |
-
scheduler.x_0s = create_xts(
|
814 |
-
config.noise_shift_delta,
|
815 |
-
config.noise_timesteps,
|
816 |
-
config.clean_step_timestep,
|
817 |
-
None,
|
818 |
-
pipe.scheduler,
|
819 |
-
timesteps,
|
820 |
-
x_0,
|
821 |
-
no_add_noise=True,
|
822 |
-
)
|
823 |
-
scheduler.folder_name = folder_name
|
824 |
-
scheduler.image_name = image_name
|
825 |
-
scheduler.p_to_p = False
|
826 |
-
scheduler.p_to_p_replace = False
|
827 |
-
scheduler.time_measure_n = time_measure_n
|
828 |
-
return scheduler
|
829 |
-
|
830 |
-
|
831 |
-
def create_grid(
|
832 |
-
images,
|
833 |
-
p_to_p_images,
|
834 |
-
prompts,
|
835 |
-
original_image_path,
|
836 |
-
):
|
837 |
-
images_len = len(images) if len(images) > 0 else len(p_to_p_images)
|
838 |
-
images_size = images[0].size if len(images) > 0 else p_to_p_images[0].size
|
839 |
-
x_0 = Image.open(original_image_path).resize(images_size)
|
840 |
-
|
841 |
-
images_ = [x_0] + images + ([x_0] + p_to_p_images if p_to_p_images else [])
|
842 |
-
|
843 |
-
l1 = 1 if len(images) > 0 else 0
|
844 |
-
l2 = 1 if len(p_to_p_images) else 0
|
845 |
-
grid = make_image_grid(images_, rows=l1 + l2, cols=images_len + 1, resize=None)
|
846 |
-
|
847 |
-
width = images_size[0]
|
848 |
-
height = width // 5
|
849 |
-
font = ImageFont.truetype("font.ttf", width // 14)
|
850 |
-
|
851 |
-
grid1 = Image.new("RGB", size=(grid.size[0], grid.size[1] + height))
|
852 |
-
grid1.paste(grid, (0, 0))
|
853 |
-
|
854 |
-
draw = ImageDraw.Draw(grid1)
|
855 |
-
|
856 |
-
c_width = 0
|
857 |
-
for prompt in prompts:
|
858 |
-
if len(prompt) > 30:
|
859 |
-
prompt = prompt[:30] + "\n" + prompt[30:]
|
860 |
-
draw.text((c_width, width * 2), prompt, font=font, fill=(255, 255, 255))
|
861 |
-
c_width += width
|
862 |
-
|
863 |
-
return grid1
|
864 |
-
|
865 |
-
|
866 |
-
def save_intermediate_results(
|
867 |
-
v1s_images,
|
868 |
-
v2s_images,
|
869 |
-
deltas_images,
|
870 |
-
v1_x0s,
|
871 |
-
v2_x0s,
|
872 |
-
deltas_x0s,
|
873 |
-
folder_name,
|
874 |
-
original_prompt,
|
875 |
-
):
|
876 |
-
from diffusers.utils import make_image_grid
|
877 |
-
|
878 |
-
path = f"{folder_name}/{original_prompt}_intermediate_results/"
|
879 |
-
os.makedirs(path, exist_ok=True)
|
880 |
-
make_image_grid(
|
881 |
-
list(itertools.chain(*v1s_images)),
|
882 |
-
rows=len(v1s_images),
|
883 |
-
cols=len(v1s_images[0]),
|
884 |
-
).save(f"{path}v1s_images.png")
|
885 |
-
make_image_grid(
|
886 |
-
list(itertools.chain(*v2s_images)),
|
887 |
-
rows=len(v2s_images),
|
888 |
-
cols=len(v2s_images[0]),
|
889 |
-
).save(f"{path}v2s_images.png")
|
890 |
-
make_image_grid(
|
891 |
-
list(itertools.chain(*deltas_images)),
|
892 |
-
rows=len(deltas_images),
|
893 |
-
cols=len(deltas_images[0]),
|
894 |
-
).save(f"{path}deltas_images.png")
|
895 |
-
make_image_grid(
|
896 |
-
list(itertools.chain(*v1_x0s)),
|
897 |
-
rows=len(v1_x0s),
|
898 |
-
cols=len(v1_x0s[0]),
|
899 |
-
).save(f"{path}v1_x0s.png")
|
900 |
-
make_image_grid(
|
901 |
-
list(itertools.chain(*v2_x0s)),
|
902 |
-
rows=len(v2_x0s),
|
903 |
-
cols=len(v2_x0s[0]),
|
904 |
-
).save(f"{path}v2_x0s.png")
|
905 |
-
make_image_grid(
|
906 |
-
list(itertools.chain(*deltas_x0s)),
|
907 |
-
rows=len(deltas_x0s[0]),
|
908 |
-
cols=len(deltas_x0s),
|
909 |
-
).save(f"{path}deltas_x0s.png")
|
910 |
-
for i, image in enumerate(list(itertools.chain(*deltas_x0s))):
|
911 |
-
image.save(f"{path}deltas_x0s_{i}.png")
|
912 |
-
|
913 |
-
|
914 |
-
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.py and removed the add_noise line
|
915 |
-
def prepare_latents_no_add_noise(
|
916 |
-
self,
|
917 |
-
image,
|
918 |
-
timestep,
|
919 |
-
batch_size,
|
920 |
-
num_images_per_prompt,
|
921 |
-
dtype,
|
922 |
-
device,
|
923 |
-
generator=None,
|
924 |
-
):
|
925 |
-
from diffusers.utils import deprecate
|
926 |
-
|
927 |
-
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
928 |
-
raise ValueError(
|
929 |
-
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
930 |
-
)
|
931 |
-
|
932 |
-
image = image.to(device=device, dtype=dtype)
|
933 |
-
|
934 |
-
batch_size = batch_size * num_images_per_prompt
|
935 |
-
|
936 |
-
if image.shape[1] == 4:
|
937 |
-
init_latents = image
|
938 |
-
|
939 |
-
else:
|
940 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
941 |
-
raise ValueError(
|
942 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
943 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
944 |
-
)
|
945 |
-
|
946 |
-
elif isinstance(generator, list):
|
947 |
-
init_latents = [
|
948 |
-
self.retrieve_latents(
|
949 |
-
self.vae.encode(image[i : i + 1]), generator=generator[i]
|
950 |
-
)
|
951 |
-
for i in range(batch_size)
|
952 |
-
]
|
953 |
-
init_latents = torch.cat(init_latents, dim=0)
|
954 |
-
else:
|
955 |
-
init_latents = self.retrieve_latents(
|
956 |
-
self.vae.encode(image), generator=generator
|
957 |
-
)
|
958 |
-
|
959 |
-
init_latents = self.vae.config.scaling_factor * init_latents
|
960 |
-
|
961 |
-
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
962 |
-
# expand init_latents for batch_size
|
963 |
-
deprecation_message = (
|
964 |
-
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
965 |
-
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
966 |
-
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
967 |
-
" your script to pass as many initial images as text prompts to suppress this warning."
|
968 |
-
)
|
969 |
-
deprecate(
|
970 |
-
"len(prompt) != len(image)",
|
971 |
-
"1.0.0",
|
972 |
-
deprecation_message,
|
973 |
-
standard_warn=False,
|
974 |
-
)
|
975 |
-
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
976 |
-
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
977 |
-
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
978 |
-
raise ValueError(
|
979 |
-
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
980 |
-
)
|
981 |
-
else:
|
982 |
-
init_latents = torch.cat([init_latents], dim=0)
|
983 |
-
|
984 |
-
# get latents
|
985 |
-
latents = init_latents
|
986 |
-
|
987 |
-
return latents
|
988 |
-
|
989 |
-
|
990 |
-
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
991 |
-
def encode_prompt_empty_prompt_zeros_sdxl(
|
992 |
-
self,
|
993 |
-
prompt: str,
|
994 |
-
prompt_2: Optional[str] = None,
|
995 |
-
device: Optional[torch.device] = None,
|
996 |
-
num_images_per_prompt: int = 1,
|
997 |
-
do_classifier_free_guidance: bool = True,
|
998 |
-
negative_prompt: Optional[str] = None,
|
999 |
-
negative_prompt_2: Optional[str] = None,
|
1000 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1001 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1002 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1003 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1004 |
-
lora_scale: Optional[float] = None,
|
1005 |
-
clip_skip: Optional[int] = None,
|
1006 |
-
):
|
1007 |
-
r"""
|
1008 |
-
Encodes the prompt into text encoder hidden states.
|
1009 |
-
|
1010 |
-
Args:
|
1011 |
-
prompt (`str` or `List[str]`, *optional*):
|
1012 |
-
prompt to be encoded
|
1013 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
1014 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1015 |
-
used in both text-encoders
|
1016 |
-
device: (`torch.device`):
|
1017 |
-
torch device
|
1018 |
-
num_images_per_prompt (`int`):
|
1019 |
-
number of images that should be generated per prompt
|
1020 |
-
do_classifier_free_guidance (`bool`):
|
1021 |
-
whether to use classifier free guidance or not
|
1022 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
1023 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1024 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1025 |
-
less than `1`).
|
1026 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1027 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1028 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1029 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1030 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1031 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
1032 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1033 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1034 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1035 |
-
argument.
|
1036 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1037 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1038 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1039 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1040 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1041 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1042 |
-
input argument.
|
1043 |
-
lora_scale (`float`, *optional*):
|
1044 |
-
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
1045 |
-
clip_skip (`int`, *optional*):
|
1046 |
-
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1047 |
-
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1048 |
-
"""
|
1049 |
-
device = device or self._execution_device
|
1050 |
-
|
1051 |
-
# set lora scale so that monkey patched LoRA
|
1052 |
-
# function of text encoder can correctly access it
|
1053 |
-
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
1054 |
-
self._lora_scale = lora_scale
|
1055 |
-
|
1056 |
-
# dynamically adjust the LoRA scale
|
1057 |
-
if self.text_encoder is not None:
|
1058 |
-
if not USE_PEFT_BACKEND:
|
1059 |
-
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
1060 |
-
else:
|
1061 |
-
scale_lora_layers(self.text_encoder, lora_scale)
|
1062 |
-
|
1063 |
-
if self.text_encoder_2 is not None:
|
1064 |
-
if not USE_PEFT_BACKEND:
|
1065 |
-
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
1066 |
-
else:
|
1067 |
-
scale_lora_layers(self.text_encoder_2, lora_scale)
|
1068 |
-
|
1069 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
1070 |
-
|
1071 |
-
if prompt is not None:
|
1072 |
-
batch_size = len(prompt)
|
1073 |
-
else:
|
1074 |
-
batch_size = prompt_embeds.shape[0]
|
1075 |
-
|
1076 |
-
# Define tokenizers and text encoders
|
1077 |
-
tokenizers = (
|
1078 |
-
[self.tokenizer, self.tokenizer_2]
|
1079 |
-
if self.tokenizer is not None
|
1080 |
-
else [self.tokenizer_2]
|
1081 |
-
)
|
1082 |
-
text_encoders = (
|
1083 |
-
[self.text_encoder, self.text_encoder_2]
|
1084 |
-
if self.text_encoder is not None
|
1085 |
-
else [self.text_encoder_2]
|
1086 |
-
)
|
1087 |
-
|
1088 |
-
if prompt_embeds is None:
|
1089 |
-
prompt_2 = prompt_2 or prompt
|
1090 |
-
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
1091 |
-
|
1092 |
-
# textual inversion: procecss multi-vector tokens if necessary
|
1093 |
-
prompt_embeds_list = []
|
1094 |
-
prompts = [prompt, prompt_2]
|
1095 |
-
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
1096 |
-
|
1097 |
-
text_inputs = tokenizer(
|
1098 |
-
prompt,
|
1099 |
-
padding="max_length",
|
1100 |
-
max_length=tokenizer.model_max_length,
|
1101 |
-
truncation=True,
|
1102 |
-
return_tensors="pt",
|
1103 |
-
)
|
1104 |
-
|
1105 |
-
text_input_ids = text_inputs.input_ids
|
1106 |
-
untruncated_ids = tokenizer(
|
1107 |
-
prompt, padding="longest", return_tensors="pt"
|
1108 |
-
).input_ids
|
1109 |
-
|
1110 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
1111 |
-
-1
|
1112 |
-
] and not torch.equal(text_input_ids, untruncated_ids):
|
1113 |
-
removed_text = tokenizer.batch_decode(
|
1114 |
-
untruncated_ids[:, tokenizer.model_max_length - 1 : -1]
|
1115 |
-
)
|
1116 |
-
logger.warning(
|
1117 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
1118 |
-
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
1119 |
-
)
|
1120 |
-
|
1121 |
-
prompt_embeds = text_encoder(
|
1122 |
-
text_input_ids.to(device), output_hidden_states=True
|
1123 |
-
)
|
1124 |
-
|
1125 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
1126 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
1127 |
-
if clip_skip is None:
|
1128 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
1129 |
-
else:
|
1130 |
-
# "2" because SDXL always indexes from the penultimate layer.
|
1131 |
-
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
1132 |
-
|
1133 |
-
if self.config.force_zeros_for_empty_prompt:
|
1134 |
-
prompt_embeds[[i for i in range(len(prompt)) if prompt[i] == ""]] = 0
|
1135 |
-
pooled_prompt_embeds[
|
1136 |
-
[i for i in range(len(prompt)) if prompt[i] == ""]
|
1137 |
-
] = 0
|
1138 |
-
|
1139 |
-
prompt_embeds_list.append(prompt_embeds)
|
1140 |
-
|
1141 |
-
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
1142 |
-
|
1143 |
-
# get unconditional embeddings for classifier free guidance
|
1144 |
-
zero_out_negative_prompt = (
|
1145 |
-
negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
1146 |
-
)
|
1147 |
-
if (
|
1148 |
-
do_classifier_free_guidance
|
1149 |
-
and negative_prompt_embeds is None
|
1150 |
-
and zero_out_negative_prompt
|
1151 |
-
):
|
1152 |
-
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
1153 |
-
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
1154 |
-
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
1155 |
-
negative_prompt = negative_prompt or ""
|
1156 |
-
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
1157 |
-
|
1158 |
-
# normalize str to list
|
1159 |
-
negative_prompt = (
|
1160 |
-
batch_size * [negative_prompt]
|
1161 |
-
if isinstance(negative_prompt, str)
|
1162 |
-
else negative_prompt
|
1163 |
-
)
|
1164 |
-
negative_prompt_2 = (
|
1165 |
-
batch_size * [negative_prompt_2]
|
1166 |
-
if isinstance(negative_prompt_2, str)
|
1167 |
-
else negative_prompt_2
|
1168 |
-
)
|
1169 |
-
|
1170 |
-
uncond_tokens: List[str]
|
1171 |
-
if prompt is not None and type(prompt) is not type(negative_prompt):
|
1172 |
-
raise TypeError(
|
1173 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
1174 |
-
f" {type(prompt)}."
|
1175 |
-
)
|
1176 |
-
elif batch_size != len(negative_prompt):
|
1177 |
-
raise ValueError(
|
1178 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
1179 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
1180 |
-
" the batch size of `prompt`."
|
1181 |
-
)
|
1182 |
-
else:
|
1183 |
-
uncond_tokens = [negative_prompt, negative_prompt_2]
|
1184 |
-
|
1185 |
-
negative_prompt_embeds_list = []
|
1186 |
-
for negative_prompt, tokenizer, text_encoder in zip(
|
1187 |
-
uncond_tokens, tokenizers, text_encoders
|
1188 |
-
):
|
1189 |
-
|
1190 |
-
max_length = prompt_embeds.shape[1]
|
1191 |
-
uncond_input = tokenizer(
|
1192 |
-
negative_prompt,
|
1193 |
-
padding="max_length",
|
1194 |
-
max_length=max_length,
|
1195 |
-
truncation=True,
|
1196 |
-
return_tensors="pt",
|
1197 |
-
)
|
1198 |
-
|
1199 |
-
negative_prompt_embeds = text_encoder(
|
1200 |
-
uncond_input.input_ids.to(device),
|
1201 |
-
output_hidden_states=True,
|
1202 |
-
)
|
1203 |
-
# We are only ALWAYS interested in the pooled output of the final text encoder
|
1204 |
-
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
1205 |
-
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
1206 |
-
|
1207 |
-
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
1208 |
-
|
1209 |
-
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
1210 |
-
|
1211 |
-
if self.text_encoder_2 is not None:
|
1212 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
1213 |
-
else:
|
1214 |
-
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
1215 |
-
|
1216 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
1217 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
1218 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
1219 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
1220 |
-
|
1221 |
-
if do_classifier_free_guidance:
|
1222 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
1223 |
-
seq_len = negative_prompt_embeds.shape[1]
|
1224 |
-
|
1225 |
-
if self.text_encoder_2 is not None:
|
1226 |
-
negative_prompt_embeds = negative_prompt_embeds.to(
|
1227 |
-
dtype=self.text_encoder_2.dtype, device=device
|
1228 |
-
)
|
1229 |
-
else:
|
1230 |
-
negative_prompt_embeds = negative_prompt_embeds.to(
|
1231 |
-
dtype=self.unet.dtype, device=device
|
1232 |
-
)
|
1233 |
-
|
1234 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
1235 |
-
1, num_images_per_prompt, 1
|
1236 |
-
)
|
1237 |
-
negative_prompt_embeds = negative_prompt_embeds.view(
|
1238 |
-
batch_size * num_images_per_prompt, seq_len, -1
|
1239 |
-
)
|
1240 |
-
|
1241 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
1242 |
-
bs_embed * num_images_per_prompt, -1
|
1243 |
-
)
|
1244 |
-
if do_classifier_free_guidance:
|
1245 |
-
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
|
1246 |
-
1, num_images_per_prompt
|
1247 |
-
).view(bs_embed * num_images_per_prompt, -1)
|
1248 |
-
|
1249 |
-
if self.text_encoder is not None:
|
1250 |
-
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
1251 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
1252 |
-
unscale_lora_layers(self.text_encoder, lora_scale)
|
1253 |
-
|
1254 |
-
if self.text_encoder_2 is not None:
|
1255 |
-
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
1256 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
1257 |
-
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
1258 |
-
|
1259 |
-
return (
|
1260 |
-
prompt_embeds,
|
1261 |
-
negative_prompt_embeds,
|
1262 |
-
pooled_prompt_embeds,
|
1263 |
-
negative_pooled_prompt_embeds,
|
1264 |
-
)
|
1265 |
-
|
1266 |
-
|
1267 |
-
def create_xts(
|
1268 |
-
noise_shift_delta,
|
1269 |
-
noise_timesteps,
|
1270 |
-
clean_step_timestep,
|
1271 |
-
generator,
|
1272 |
-
scheduler,
|
1273 |
-
timesteps,
|
1274 |
-
x_0,
|
1275 |
-
no_add_noise=False,
|
1276 |
-
):
|
1277 |
-
if noise_timesteps is None:
|
1278 |
-
noising_delta = noise_shift_delta * (timesteps[0] - timesteps[1])
|
1279 |
-
noise_timesteps = [timestep - int(noising_delta) for timestep in timesteps]
|
1280 |
-
|
1281 |
-
first_x_0_idx = len(noise_timesteps)
|
1282 |
-
for i in range(len(noise_timesteps)):
|
1283 |
-
if noise_timesteps[i] <= 0:
|
1284 |
-
first_x_0_idx = i
|
1285 |
-
break
|
1286 |
-
|
1287 |
-
noise_timesteps = noise_timesteps[:first_x_0_idx]
|
1288 |
-
|
1289 |
-
x_0_expanded = x_0.expand(len(noise_timesteps), -1, -1, -1)
|
1290 |
-
noise = (
|
1291 |
-
torch.randn(x_0_expanded.size(), generator=generator, device="cpu").to(
|
1292 |
-
x_0.device
|
1293 |
-
)
|
1294 |
-
if not no_add_noise
|
1295 |
-
else torch.zeros_like(x_0_expanded)
|
1296 |
-
)
|
1297 |
-
x_ts = scheduler.add_noise(
|
1298 |
-
x_0_expanded,
|
1299 |
-
noise,
|
1300 |
-
torch.IntTensor(noise_timesteps),
|
1301 |
-
)
|
1302 |
-
x_ts = [t.unsqueeze(dim=0) for t in list(x_ts)]
|
1303 |
-
x_ts += [x_0] * (len(timesteps) - first_x_0_idx)
|
1304 |
-
x_ts += [x_0]
|
1305 |
-
if clean_step_timestep > 0:
|
1306 |
-
x_ts += [x_0]
|
1307 |
-
return x_ts
|
1308 |
-
|
1309 |
-
|
1310 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
1311 |
-
def add_noise(
|
1312 |
-
self,
|
1313 |
-
original_samples: torch.FloatTensor,
|
1314 |
-
noise: torch.FloatTensor,
|
1315 |
-
image_timesteps: torch.IntTensor,
|
1316 |
-
noise_timesteps: torch.IntTensor,
|
1317 |
-
) -> torch.FloatTensor:
|
1318 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
1319 |
-
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
1320 |
-
# for the subsequent add_noise calls
|
1321 |
-
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
1322 |
-
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
1323 |
-
timesteps = timesteps.to(original_samples.device)
|
1324 |
-
|
1325 |
-
sqrt_alpha_prod = alphas_cumprod[image_timesteps] ** 0.5
|
1326 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
1327 |
-
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
1328 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
1329 |
-
|
1330 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[noise_timesteps]) ** 0.5
|
1331 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
1332 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
1333 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
1334 |
-
|
1335 |
-
noisy_samples = (
|
1336 |
-
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
1337 |
-
)
|
1338 |
-
return noisy_samples
|
1339 |
-
|
1340 |
-
|
1341 |
-
def make_image_grid(
|
1342 |
-
images: List[PIL.Image.Image], rows: int, cols: int, resize: int = None, size=None
|
1343 |
-
) -> PIL.Image.Image:
|
1344 |
-
"""
|
1345 |
-
Prepares a single grid of images. Useful for visualization purposes.
|
1346 |
-
"""
|
1347 |
-
assert len(images) == rows * cols
|
1348 |
-
|
1349 |
-
if resize is not None:
|
1350 |
-
images = [img.resize((resize, resize)) for img in images]
|
1351 |
-
|
1352 |
-
w, h = size
|
1353 |
-
grid = Image.new("RGB", size=(cols * w, rows * h))
|
1354 |
-
|
1355 |
-
for i, img in enumerate(images):
|
1356 |
-
grid.paste(img, box=(i % cols * w, i // cols * h))
|
1357 |
-
return grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|