File size: 3,382 Bytes
59f949f
 
 
c5a321b
59f949f
 
 
 
 
c5a321b
59f949f
053ae38
 
 
 
 
 
 
59f949f
053ae38
 
59f949f
053ae38
59f949f
 
91cb807
8b04feb
91cb807
59f949f
 
 
 
053ae38
59f949f
 
053ae38
59f949f
053ae38
59f949f
 
053ae38
59f949f
053ae38
59f949f
 
 
053ae38
59f949f
 
053ae38
59f949f
 
 
 
 
 
 
 
 
053ae38
59f949f
 
053ae38
 
d63526a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c75445
 
 
 
 
 
 
 
 
 
 
 
 
59f949f
 
 
 
 
 
 
 
 
053ae38
59f949f
 
91cb807
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from __future__ import annotations

import gradio as gr
# import spaces
from PIL import Image
import torch

from my_run import run as run_model

# @spaces.GPU
def main_pipeline(
    input_image: str,
    src_prompt: str,
    tgt_prompt: str,
    seed: int,
    w1: float,
    # w2: float,
):

    w2 = 1.0
    res_image = run_model(input_image, src_prompt, tgt_prompt, seed, w1, w2)

    return res_image


with gr.Blocks(css="app/style.css", theme="Nymbo/Nymbo_Theme") as demo:

    gr.HTML("<center><h1>Turbo Edit</h1></center>")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Input image", type="filepath", height=512, width=512
            )
            src_prompt = gr.Text(
                label="Source Prompt",
                max_lines=1,
                placeholder="Source Prompt",
            )
            tgt_prompt = gr.Text(
                label="Target Prompt",
                max_lines=1,
                placeholder="Target Prompt",
            )
            with gr.Accordion("Advanced Options", open=False):
                seed = gr.Slider(
                    label="seed", minimum=0, maximum=16 * 1024, value=7865, step=1
                )
                w1 = gr.Slider(
                    label="w", minimum=1.0, maximum=3.0, value=1.5, step=0.05
                )
                # w2 = gr.Slider(
                #     label='w2',
                #     minimum=1.0,
                #     maximum=3.0,
                #     value=1.0,
                #     step=0.05
                # )

            run_button = gr.Button("Edit")
        with gr.Column():
            # result = gr.Gallery(label='Result')
            result = gr.Image(label="Result", type="pil", height=512, width=512)

            examples = [
                [
                    "examples_demo/1.jpeg",  # input_image
                    "a dreamy cat sleeping on a floating leaf",  # src_prompt
                    "a dreamy bear sleeping on a floating leaf",  # tgt_prompt
                    7,  # seed
                    1.3,  # w1
                ],
                [
                    "examples_demo/2.jpeg",  # input_image
                    "A painting of a cat and a bunny surrounded by flowers",  # src_prompt
                    "a polygonal illustration of a cat and a bunny",  # tgt_prompt
                    2,  # seed
                    1.5,  # w1
                ],
                [
                    "examples_demo/3.jpg",  # input_image
                    "a chess pawn wearing a crown",  # src_prompt
                    "a chess pawn wearing a hat",  # tgt_prompt
                    2,  # seed
                    1.3,  # w1
                ],
            ]

            gr.Examples(
                examples=examples,
                inputs=[
                    input_image,
                    src_prompt,
                    tgt_prompt,
                    seed,
                    w1,
                ],
                outputs=[result],
                fn=main_pipeline,
                cache_examples=True,
            )

    inputs = [
        input_image,
        src_prompt,
        tgt_prompt,
        seed,
        w1,
        # w2,
    ]
    outputs = [result]
    run_button.click(fn=main_pipeline, inputs=inputs, outputs=outputs)

demo.queue(max_size=50).launch(share=False)