Spaces:
Paused
Paused
File size: 16,313 Bytes
59f949f 128983c 59f949f 3347638 59f949f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
from diffusers import AutoPipelineForImage2Image
from diffusers import DDPMScheduler
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import retrieve_timesteps, retrieve_latents
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
import torch
from PIL import Image
num_steps_inversion = 5
strngth = 0.8
generator = None
device = "cuda" if torch.cuda.is_available() else "cpu"
image_path = "edit_dataset/01.jpg"
src_prompt = "butterfly perched on purple flower"
tgt_prompt = "dragonfly perched on purple flower"
ws1 = [1.5, 1.5, 1.5, 1.5]
ws2 = [1, 1, 1, 1]
def encode_image(image, pipe):
image = pipe.image_processor.preprocess(image)
image = image.to(device=device, dtype=pipeline.dtype)
if pipe.vae.config.force_upcast:
image = image.float()
pipe.vae.to(dtype=torch.float32)
if isinstance(generator, list):
init_latents = [
retrieve_latents(pipe.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(1)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(pipe.vae.encode(image), generator=generator)
if pipe.vae.config.force_upcast:
pipe.vae.to(pipeline.dtype)
init_latents = init_latents.to(pipeline.dtype)
init_latents = pipe.vae.config.scaling_factor * init_latents
return init_latents.to(dtype=torch.float16)
# def create_xts(scheduler, timesteps, x_0, noise_shift_delta=1, generator=None):
# noising_delta = noise_shift_delta * (timesteps[0] - timesteps[1])
# noise_timesteps = [timestep - int(noising_delta) for timestep in timesteps]
# noise_timesteps = noise_timesteps[:3]
# x_0_expanded = x_0.expand(len(noise_timesteps), -1, -1, -1)
# noise = torch.randn(x_0_expanded.size(), generator=generator, device="cpu", dtype=x_0.dtype).to(x_0.device)
# x_ts = scheduler.add_noise(x_0_expanded, noise, torch.IntTensor(noise_timesteps))
# x_ts = [t.unsqueeze(dim=0) for t in list(x_ts)]
# x_ts += [x_0]
# return x_ts
def deterministic_ddpm_step(
model_output: torch.FloatTensor,
timestep,
sample: torch.FloatTensor,
eta,
use_clipped_model_output,
generator,
variance_noise,
return_dict,
scheduler,
):
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
t = timestep
prev_t = scheduler.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and scheduler.variance_type in [
"learned",
"learned_range",
]:
model_output, predicted_variance = torch.split(
model_output, sample.shape[1], dim=1
)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
scheduler.alphas_cumprod[prev_t] if prev_t >= 0 else scheduler.one
)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if scheduler.config.prediction_type == "epsilon":
pred_original_sample = (
sample - beta_prod_t ** (0.5) * model_output
) / alpha_prod_t ** (0.5)
elif scheduler.config.prediction_type == "sample":
pred_original_sample = model_output
elif scheduler.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (
beta_prod_t**0.5
) * model_output
else:
raise ValueError(
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for the DDPMScheduler."
)
# 3. Clip or threshold "predicted x_0"
if scheduler.config.thresholding:
pred_original_sample = scheduler._threshold_sample(pred_original_sample)
elif scheduler.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-scheduler.config.clip_sample_range, scheduler.config.clip_sample_range
)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (
alpha_prod_t_prev ** (0.5) * current_beta_t
) / beta_prod_t
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = (
pred_original_sample_coeff * pred_original_sample
+ current_sample_coeff * sample
)
return pred_prev_sample
def normalize(
z_t,
i,
max_norm_zs,
):
max_norm = max_norm_zs[i]
if max_norm < 0:
return z_t, 1
norm = torch.norm(z_t)
if norm < max_norm:
return z_t, 1
coeff = max_norm / norm
z_t = z_t * coeff
return z_t, coeff
def step_save_latents(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise= None,
return_dict: bool = True,
):
timestep_index = self._inner_index
next_timestep_index = timestep_index + 1
u_hat_t = deterministic_ddpm_step(
model_output=model_output,
timestep=timestep,
sample=sample,
eta=eta,
use_clipped_model_output=use_clipped_model_output,
generator=generator,
variance_noise=variance_noise,
return_dict=False,
scheduler=self,
)
x_t_minus_1 = self.x_ts[timestep_index]
self.x_ts_c_hat.append(u_hat_t)
z_t = x_t_minus_1 - u_hat_t
self.latents.append(z_t)
z_t, _ = normalize(z_t, timestep_index, [-1, -1, -1, 15.5])
x_t_minus_1_predicted = u_hat_t + z_t
if not return_dict:
return (x_t_minus_1_predicted,)
return DDIMSchedulerOutput(prev_sample=x_t_minus_1, pred_original_sample=None)
def step_use_latents(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise= None,
return_dict: bool = True,
):
print(f'_inner_index: {self._inner_index}')
timestep_index = self._inner_index
next_timestep_index = timestep_index + 1
z_t = self.latents[timestep_index] # + 1 because latents[0] is X_T
_, normalize_coefficient = normalize(
z_t,
timestep_index,
[-1, -1, -1, 15.5],
)
if normalize_coefficient == 0:
eta = 0
# eta = normalize_coefficient
x_t_hat_c_hat = deterministic_ddpm_step(
model_output=model_output,
timestep=timestep,
sample=sample,
eta=eta,
use_clipped_model_output=use_clipped_model_output,
generator=generator,
variance_noise=variance_noise,
return_dict=False,
scheduler=self,
)
w1 = ws1[timestep_index]
w2 = ws2[timestep_index]
x_t_minus_1_exact = self.x_ts[timestep_index]
x_t_minus_1_exact = x_t_minus_1_exact.expand_as(x_t_hat_c_hat)
x_t_c_hat: torch.Tensor = self.x_ts_c_hat[timestep_index]
x_t_c = x_t_c_hat[0].expand_as(x_t_hat_c_hat)
zero_index_reconstruction = 0
edit_prompts_num = (model_output.size(0) - zero_index_reconstruction) // 2
x_t_hat_c_indices = (zero_index_reconstruction, edit_prompts_num + zero_index_reconstruction)
edit_images_indices = (
edit_prompts_num + zero_index_reconstruction,
model_output.size(0)
)
x_t_hat_c = torch.zeros_like(x_t_hat_c_hat)
x_t_hat_c[edit_images_indices[0] : edit_images_indices[1]] = x_t_hat_c_hat[
x_t_hat_c_indices[0] : x_t_hat_c_indices[1]
]
v1 = x_t_hat_c_hat - x_t_hat_c
v2 = x_t_hat_c - normalize_coefficient * x_t_c
x_t_minus_1 = normalize_coefficient * x_t_minus_1_exact + w1 * v1 + w2 * v2
x_t_minus_1[x_t_hat_c_indices[0] : x_t_hat_c_indices[1]] = x_t_minus_1[
edit_images_indices[0] : edit_images_indices[1]
] # update x_t_hat_c to be x_t_hat_c_hat
if not return_dict:
return (x_t_minus_1,)
return DDIMSchedulerOutput(
prev_sample=x_t_minus_1,
pred_original_sample=None,
)
class myDDPMScheduler(DDPMScheduler):
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise= None,
return_dict: bool = True,
):
print(f"timestep: {timestep}")
res_inv = step_save_latents(
self,
model_output[:1, :, :, :],
timestep,
sample[:1, :, :, :],
eta,
use_clipped_model_output,
generator,
variance_noise,
return_dict,
)
res_inf = step_use_latents(
self,
model_output[1:, :, :, :],
timestep,
sample[1:, :, :, :],
eta,
use_clipped_model_output,
generator,
variance_noise,
return_dict,
)
self._inner_index+=1
res = (torch.cat((res_inv[0], res_inf[0]), dim=0),)
return res
pipeline = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", safety_checker = None)
pipeline = pipeline.to(device)
pipeline.scheduler = DDPMScheduler.from_pretrained( # type: ignore
'stabilityai/sdxl-turbo',
subfolder="scheduler",
# cache_dir="/home/joberant/NLP_2223/giladd/test_dir/sdxl-turbo/models_cache",
)
# pipeline.scheduler = DDPMScheduler.from_config(pipeline.scheduler.config)
denoising_start = 0.2
timesteps, num_inference_steps = retrieve_timesteps(
pipeline.scheduler, num_steps_inversion, device, None
)
timesteps, num_inference_steps = pipeline.get_timesteps(
num_inference_steps=num_inference_steps,
device=device,
denoising_start=denoising_start,
strength=0,
)
timesteps = timesteps.type(torch.int64)
from functools import partial
timesteps = [torch.tensor(t) for t in timesteps.tolist()]
pipeline.__call__ = partial(
pipeline.__call__,
num_inference_steps=num_steps_inversion,
guidance_scale=0,
generator=generator,
denoising_start=denoising_start,
strength=0,
)
# timesteps, num_inference_steps = retrieve_timesteps(pipeline.scheduler, num_steps_inversion, device, None)
# timesteps, num_inference_steps = pipeline.get_timesteps(num_inference_steps=num_inference_steps, device=device, strength=strngth)
from utils import get_ddpm_inversion_scheduler, create_xts
from config import get_config, get_config_name
import argparse
# parser = argparse.ArgumentParser()
# parser.add_argument("--images_paths", type=str, default=None)
# parser.add_argument("--images_folder", type=str, default=None)
# parser.set_defaults(force_use_cpu=False)
# parser.add_argument("--force_use_cpu", action="store_true")
# parser.add_argument("--folder_name", type=str, default='test_measure_time')
# parser.add_argument("--config_from_file", type=str, default='run_configs/noise_shift_guidance_1_5.yaml')
# parser.set_defaults(save_intermediate_results=False)
# parser.add_argument("--save_intermediate_results", action="store_true")
# parser.add_argument("--batch_size", type=int, default=None)
# parser.set_defaults(skip_p_to_p=False)
# parser.add_argument("--skip_p_to_p", action="store_true", default=True)
# parser.set_defaults(only_p_to_p=False)
# parser.add_argument("--only_p_to_p", action="store_true")
# parser.set_defaults(fp16=False)
# parser.add_argument("--fp16", action="store_true", default=False)
# parser.add_argument("--prompts_file", type=str, default='dataset_measure_time/dataset.json')
# parser.add_argument("--images_in_prompts_file", type=str, default=None)
# parser.add_argument("--seed", type=int, default=2)
# parser.add_argument("--time_measure_n", type=int, default=1)
# args = parser.parse_args()
class Object(object):
pass
args = Object()
args.images_paths = None
args.images_folder = None
args.force_use_cpu = False
args.folder_name = 'test_measure_time'
args.config_from_file = 'run_configs/noise_shift_guidance_1_5.yaml'
args.save_intermediate_results = False
args.batch_size = None
args.skip_p_to_p = True
args.only_p_to_p = False
args.fp16 = False
args.prompts_file = 'dataset_measure_time/dataset.json'
args.images_in_prompts_file = None
args.seed = 986
args.time_measure_n = 1
assert (
args.batch_size is None or args.save_intermediate_results is False
), "save_intermediate_results is not implemented for batch_size > 1"
config = get_config(args)
# latent = latents[0].expand(3, -1, -1, -1)
# prompt = [src_prompt, src_prompt, tgt_prompt]
# image = pipeline.__call__(image=latent, prompt=prompt, eta=1).images
# for i, im in enumerate(image):
# im.save(f"output_{i}.png")
def run(image_path, src_prompt, tgt_prompt, seed, w1, w2):
generator = torch.Generator().manual_seed(seed)
x_0_image = Image.open(image_path).convert("RGB").resize((512, 512), Image.LANCZOS)
x_0 = encode_image(x_0_image, pipeline)
# x_ts = create_xts(pipeline.scheduler, timesteps, x_0, noise_shift_delta=1, generator=generator)
x_ts = create_xts(1, None, 0, generator, pipeline.scheduler, timesteps, x_0, no_add_noise=False)
x_ts = [xt.to(dtype=torch.float16) for xt in x_ts]
latents = [x_ts[0]]
x_ts_c_hat = [None]
config.ws1 = [w1] * 4
config.ws2 = [w2] * 4
pipeline.scheduler = get_ddpm_inversion_scheduler(
pipeline.scheduler,
config.step_function,
config,
timesteps,
config.save_timesteps,
latents,
x_ts,
x_ts_c_hat,
args.save_intermediate_results,
pipeline,
x_0,
v1s_images := [],
v2s_images := [],
deltas_images := [],
v1_x0s := [],
v2_x0s := [],
deltas_x0s := [],
"res12",
image_name="im_name",
time_measure_n=args.time_measure_n,
)
latent = latents[0].expand(3, -1, -1, -1)
prompt = [src_prompt, src_prompt, tgt_prompt]
image = pipeline.__call__(image=latent, prompt=prompt, eta=1).images
return image[2]
if __name__ == "__main__":
res = run(image_path, src_prompt, tgt_prompt, args.seed, 1.5, 1.0)
res.save("output.png")
|