Spaces:
Running
Running
Clean state
Browse files
app.py
CHANGED
@@ -35,9 +35,12 @@ cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed
|
|
35 |
def count_string_tokens(string: str, model: str) -> int:
|
36 |
try:
|
37 |
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
|
38 |
-
except
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
return len(encoding.encode(string))
|
42 |
|
43 |
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
|
@@ -85,26 +88,42 @@ def compute_all(input_type, prompt_text, completion_text, prompt_tokens, complet
|
|
85 |
df[col] = df[col].str.replace('$', '').astype(float)
|
86 |
|
87 |
if len(df) > 1:
|
88 |
-
|
89 |
-
|
|
|
90 |
color = cmap(norm(val))
|
91 |
-
rgba = tuple(int(x * 255) for x in color[:3]) + (0.5,)
|
92 |
rgba = tuple(int(x * 255) for x in color[:3]) + (0.5,) # 0.5 for 50% opacity
|
93 |
return f'background-color: rgba{rgba}'
|
94 |
-
|
95 |
-
min, max = df["Total Cost"].min(), df["Total Cost"].max()
|
96 |
-
df = df.style.applymap(lambda x: apply_color(x, min, max), subset=["Total Cost"])
|
97 |
else:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
def toggle_input_visibility(choice):
|
110 |
return (
|
@@ -112,7 +131,25 @@ def toggle_input_visibility(choice):
|
|
112 |
gr.Group(visible=(choice == "Token Count Input"))
|
113 |
)
|
114 |
|
115 |
-
with gr.Blocks(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
gr.Markdown("""
|
117 |
# Text-to-$$$: Calculate the price of your LLM runs
|
118 |
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
|
@@ -142,12 +179,12 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, seconda
|
|
142 |
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.001, step=0.00001, value=0.001)
|
143 |
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
|
144 |
|
145 |
-
model = gr.Dropdown(label="Models (
|
146 |
|
147 |
-
gr.Markdown("##
|
148 |
|
149 |
with gr.Row():
|
150 |
-
results_table = gr.
|
151 |
|
152 |
input_type.change(
|
153 |
toggle_input_visibility,
|
|
|
35 |
def count_string_tokens(string: str, model: str) -> int:
|
36 |
try:
|
37 |
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
|
38 |
+
except:
|
39 |
+
try:
|
40 |
+
encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1])
|
41 |
+
except KeyError:
|
42 |
+
print(f"Model {model} not found. Using cl100k_base encoding.")
|
43 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
44 |
return len(encoding.encode(string))
|
45 |
|
46 |
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
|
|
|
88 |
df[col] = df[col].str.replace('$', '').astype(float)
|
89 |
|
90 |
if len(df) > 1:
|
91 |
+
norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max())
|
92 |
+
|
93 |
+
def apply_color(val):
|
94 |
color = cmap(norm(val))
|
|
|
95 |
rgba = tuple(int(x * 255) for x in color[:3]) + (0.5,) # 0.5 for 50% opacity
|
96 |
return f'background-color: rgba{rgba}'
|
97 |
+
|
|
|
|
|
98 |
else:
|
99 |
+
def apply_color(val):
|
100 |
+
return "background-color: rgba(0, 0, 0, 0)"
|
101 |
+
|
102 |
+
|
103 |
+
# Apply colors and formatting
|
104 |
+
def style_cell(val, column):
|
105 |
+
style = ''
|
106 |
+
if column == 'Total Cost':
|
107 |
+
style += 'font-weight: bold; '
|
108 |
+
if column in ['Prompt Cost', 'Completion Cost', 'Total Cost']:
|
109 |
+
val = f'${val:.6f}'
|
110 |
+
if column == 'Total Cost':
|
111 |
+
style += apply_color(float(val.replace('$', '')))
|
112 |
+
return f'<td style="{style}">{val}</td>'
|
113 |
+
|
114 |
+
html_table = '<table class="styled-table">'
|
115 |
+
html_table += '<thead><tr>'
|
116 |
+
for col in df.columns:
|
117 |
+
html_table += f'<th>{col}</th>'
|
118 |
+
html_table += '</tr></thead><tbody>'
|
119 |
+
for _, row in df.iterrows():
|
120 |
+
html_table += '<tr>'
|
121 |
+
for col in df.columns:
|
122 |
+
html_table += style_cell(row[col], col)
|
123 |
+
html_table += '</tr>'
|
124 |
+
html_table += '</tbody></table>'
|
125 |
+
|
126 |
+
return html_table
|
127 |
|
128 |
def toggle_input_visibility(choice):
|
129 |
return (
|
|
|
131 |
gr.Group(visible=(choice == "Token Count Input"))
|
132 |
)
|
133 |
|
134 |
+
with gr.Blocks(css="""
|
135 |
+
.styled-table {
|
136 |
+
border-collapse: collapse;
|
137 |
+
margin: 25px 0;
|
138 |
+
font-family: Arial, sans-serif;
|
139 |
+
width: 100%;
|
140 |
+
}
|
141 |
+
.styled-table th, .styled-table td {
|
142 |
+
padding: 12px 15px;
|
143 |
+
text-align: left;
|
144 |
+
vertical-align: middle;
|
145 |
+
}
|
146 |
+
.styled-table tbody tr {
|
147 |
+
border-bottom: 1px solid #dddddd;
|
148 |
+
}
|
149 |
+
.styled-table tbody tr:nth-of-type(even) {
|
150 |
+
background-color: #f3f3f3;
|
151 |
+
}
|
152 |
+
""", theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo:
|
153 |
gr.Markdown("""
|
154 |
# Text-to-$$$: Calculate the price of your LLM runs
|
155 |
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
|
|
|
179 |
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.001, step=0.00001, value=0.001)
|
180 |
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
|
181 |
|
182 |
+
model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value="anyscale/meta-llama/Meta-Llama-3-8B-Instruct", multiselect=True)
|
183 |
|
184 |
+
gr.Markdown("## Resulting Costs 👇")
|
185 |
|
186 |
with gr.Row():
|
187 |
+
results_table = gr.HTML()
|
188 |
|
189 |
input_type.change(
|
190 |
toggle_input_visibility,
|