Spaces:
Sleeping
Sleeping
import json | |
import os | |
import urllib.parse | |
import gradio as gr | |
import requests | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from huggingface_hub import InferenceClient | |
example = HuggingfaceHubSearch().example_value() | |
client = InferenceClient( | |
"meta-llama/Meta-Llama-3.1-70B-Instruct", | |
token=os.environ["HF_TOKEN"], | |
) | |
def get_iframe(hub_repo_id, sql_query=None): | |
if sql_query: | |
sql_query = urllib.parse.quote(sql_query) | |
url = f"https://huggingface.co./datasets/{hub_repo_id}/embed/viewer?sql_console=true&sql={sql_query}" | |
else: | |
url = f"https://huggingface.co./datasets/{hub_repo_id}/embed/viewer" | |
iframe = f""" | |
<iframe | |
src="{url}" | |
frameborder="0" | |
width="100%" | |
height="800px" | |
></iframe> | |
""" | |
return iframe | |
def get_column_info(hub_repo_id): | |
url: str = f"https://datasets-server.huggingface.co/info?dataset={hub_repo_id}" | |
response = requests.get(url) | |
try: | |
data = response.json() | |
data = data.get("dataset_info") | |
key = list(data.keys())[0] | |
features: str = json.dumps(data.get(key).get("features")) | |
except Exception as e: | |
gr.Error(f"Error getting column info: {e}") | |
return features | |
def query_dataset(hub_repo_id, features, query): | |
messages = [ | |
{ | |
"role": "system", | |
"content": "You are a helpful assistant that returns a DuckDB SQL query based on the user's query and dataset features. Only return the SQL query, no other text.", | |
}, | |
{ | |
"role": "user", | |
"content": f"""table train | |
# Features | |
{features} | |
# Query | |
{query} | |
""", | |
}, | |
] | |
response = client.chat_completion( | |
messages=messages, | |
max_tokens=1000, | |
stream=False, | |
) | |
query = response.choices[0].message.content | |
return query, get_iframe(hub_repo_id, query) | |
with gr.Blocks() as demo: | |
gr.Markdown("""# π₯ π¦ π€ Text To Sql Hub Datasets π₯ π¦ π€ | |
This is a basic text to SQL tool that allows you to query datasets on Huggingface Hub. | |
It is built with [DuckDB](https://duckdb.org/), [Huggingface's Inference API](https://huggingface.co./docs/api-inference/index), and [LLama 3.1 70B](https://huggingface.co./meta-llama/Meta-Llama-3.1-70B-Instruct). | |
Also, it uses the [dataset-server API](https://redocly.github.io/redoc/?url=https://datasets-server.huggingface.co/openapi.json#operation/isValidDataset). | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
search_in = HuggingfaceHubSearch( | |
label="Search Huggingface Hub", | |
placeholder="Search for models on Huggingface", | |
search_type="dataset", | |
) | |
btn = gr.Button("Show Dataset") | |
with gr.Row(): | |
search_out = gr.HTML(label="Search Results") | |
with gr.Row(): | |
features = gr.Code(label="Features", language="json", visible=False) | |
with gr.Row(): | |
query = gr.Textbox(label="Query", placeholder="Enter a query to generate SQL") | |
with gr.Row(): | |
sql_out = gr.Code(label="SQL Query") | |
with gr.Row(): | |
btn2 = gr.Button("Query Dataset") | |
gr.on( | |
[btn.click, search_in.submit], | |
fn=get_iframe, | |
inputs=[search_in], | |
outputs=[search_out], | |
).then( | |
fn=get_column_info, | |
inputs=[search_in], | |
outputs=[features], | |
) | |
btn2.click( | |
fn=query_dataset, | |
inputs=[search_in, features, query], | |
outputs=[sql_out, search_out], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |