initial version of SAM2 space
Browse files- app.py +46 -11
- utils/models.py +15 -1
app.py
CHANGED
@@ -6,27 +6,48 @@ import supervision as sv
|
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
9 |
-
|
|
|
10 |
|
11 |
MARKDOWN = """
|
12 |
# Segment Anything Model 2 🔥
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable
|
15 |
visual segmentation in both images and videos. The model extends its functionality to
|
16 |
video by treating images as single-frame videos. Its design, a simple transformer
|
17 |
-
architecture with streaming memory, enables real-time video processing.
|
|
|
|
|
|
|
|
|
18 |
"""
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
DEVICE = torch.device('cuda')
|
22 |
-
|
23 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
24 |
-
|
25 |
-
CONFIG = "sam2_hiera_l.yaml"
|
26 |
|
27 |
-
sam2_model = build_sam2(CONFIG, CHECKPOINT, device=DEVICE, apply_postprocessing=False)
|
28 |
|
29 |
-
def process(image_input) -> Optional[Image.Image]:
|
|
|
30 |
mask_generator = SAM2AutomaticMaskGenerator(sam2_model)
|
31 |
image = np.array(image_input.convert("RGB"))
|
32 |
sam_result = mask_generator.generate(image)
|
@@ -36,17 +57,31 @@ def process(image_input) -> Optional[Image.Image]:
|
|
36 |
|
37 |
with gr.Blocks() as demo:
|
38 |
gr.Markdown(MARKDOWN)
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with gr.Row():
|
41 |
with gr.Column():
|
42 |
image_input_component = gr.Image(type='pil', label='Upload image')
|
43 |
submit_button_component = gr.Button(value='Submit', variant='primary')
|
44 |
with gr.Column():
|
45 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
submit_button_component.click(
|
48 |
fn=process,
|
49 |
-
inputs=[image_input_component],
|
50 |
outputs=[image_output_component]
|
51 |
)
|
52 |
|
|
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
9 |
+
|
10 |
+
from utils.models import load_models, CHECKPOINT_NAMES
|
11 |
|
12 |
MARKDOWN = """
|
13 |
# Segment Anything Model 2 🔥
|
14 |
+
<div>
|
15 |
+
<a href="https://github.com/facebookresearch/segment-anything-2">
|
16 |
+
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
|
17 |
+
</a>
|
18 |
+
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
|
19 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
|
20 |
+
</a>
|
21 |
+
<a href="https://blog.roboflow.com/what-is-segment-anything-2/">
|
22 |
+
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
|
23 |
+
</a>
|
24 |
+
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
|
25 |
+
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
|
26 |
+
</a>
|
27 |
+
</div>
|
28 |
|
29 |
Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable
|
30 |
visual segmentation in both images and videos. The model extends its functionality to
|
31 |
video by treating images as single-frame videos. Its design, a simple transformer
|
32 |
+
architecture with streaming memory, enables real-time video processing. A
|
33 |
+
model-in-the-loop data engine, which enhances the model and data through user
|
34 |
+
interaction, was built to collect the SA-V dataset, the largest video segmentation
|
35 |
+
dataset to date. SAM 2, trained on this extensive dataset, delivers robust performance
|
36 |
+
across diverse tasks and visual domains.
|
37 |
"""
|
38 |
+
EXAMPLES = [
|
39 |
+
["tiny", "https://media.roboflow.com/notebooks/examples/dog-2.jpeg"],
|
40 |
+
["small", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg"],
|
41 |
+
["large", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg"],
|
42 |
+
]
|
43 |
|
44 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
45 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
46 |
+
MODELS = load_models(device=DEVICE)
|
|
|
47 |
|
|
|
48 |
|
49 |
+
def process(checkpoint_dropdown, image_input) -> Optional[Image.Image]:
|
50 |
+
sam2_model = MODELS[checkpoint_dropdown]
|
51 |
mask_generator = SAM2AutomaticMaskGenerator(sam2_model)
|
52 |
image = np.array(image_input.convert("RGB"))
|
53 |
sam_result = mask_generator.generate(image)
|
|
|
57 |
|
58 |
with gr.Blocks() as demo:
|
59 |
gr.Markdown(MARKDOWN)
|
60 |
+
with gr.Row():
|
61 |
+
checkpoint_dropdown_component = gr.Dropdown(
|
62 |
+
choices=CHECKPOINT_NAMES,
|
63 |
+
value=CHECKPOINT_NAMES[0],
|
64 |
+
label="Checkpoint", info="Select a SAM2 checkpoint to use.",
|
65 |
+
interactive=True
|
66 |
+
)
|
67 |
with gr.Row():
|
68 |
with gr.Column():
|
69 |
image_input_component = gr.Image(type='pil', label='Upload image')
|
70 |
submit_button_component = gr.Button(value='Submit', variant='primary')
|
71 |
with gr.Column():
|
72 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
73 |
+
with gr.Row():
|
74 |
+
gr.Examples(
|
75 |
+
fn=process,
|
76 |
+
examples=EXAMPLES,
|
77 |
+
inputs=[checkpoint_dropdown_component, image_input_component],
|
78 |
+
outputs=[image_output_component],
|
79 |
+
run_on_click=True
|
80 |
+
)
|
81 |
|
82 |
submit_button_component.click(
|
83 |
fn=process,
|
84 |
+
inputs=[checkpoint_dropdown_component, image_input_component],
|
85 |
outputs=[image_output_component]
|
86 |
)
|
87 |
|
utils/models.py
CHANGED
@@ -1,6 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
CHECKPOINTS = {
|
2 |
"tiny": ["sam2_hiera_t.yaml", "checkpoints/sam2_hiera_tiny.pt"],
|
3 |
"small": ["sam2_hiera_s.yaml", "checkpoints/sam2_hiera_small.pt"],
|
4 |
"base_plus": ["sam2_hiera_b+.yaml", "checkpoints/sam2_hiera_base_plus.pt"],
|
5 |
"large": ["sam2_hiera_l.yaml", "checkpoints/sam2_hiera_large.pt"],
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from typing import Dict, Any
|
4 |
+
from sam2.build_sam import build_sam2
|
5 |
+
|
6 |
+
CHECKPOINT_NAMES = ["tiny", "small", "base_plus", "large"]
|
7 |
+
|
8 |
CHECKPOINTS = {
|
9 |
"tiny": ["sam2_hiera_t.yaml", "checkpoints/sam2_hiera_tiny.pt"],
|
10 |
"small": ["sam2_hiera_s.yaml", "checkpoints/sam2_hiera_small.pt"],
|
11 |
"base_plus": ["sam2_hiera_b+.yaml", "checkpoints/sam2_hiera_base_plus.pt"],
|
12 |
"large": ["sam2_hiera_l.yaml", "checkpoints/sam2_hiera_large.pt"],
|
13 |
+
}
|
14 |
+
|
15 |
+
|
16 |
+
def load_models(device: torch.device) -> Dict[str, Any]:
|
17 |
+
models = {}
|
18 |
+
for key, (config, checkpoint) in CHECKPOINTS.items():
|
19 |
+
models[key] = build_sam2(config, checkpoint, device=device, apply_postprocessing=False)
|
20 |
+
return models
|