working on video inference
Browse files- app.py +133 -17
- requirements.txt +1 -0
- utils/models.py +1 -1
- utils/video.py +14 -0
app.py
CHANGED
@@ -1,14 +1,19 @@
|
|
|
|
1 |
from typing import Optional
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import supervision as sv
|
6 |
import torch
|
7 |
from PIL import Image
|
|
|
8 |
from gradio_image_prompter import ImagePrompter
|
9 |
|
10 |
from utils.models import load_models, CHECKPOINT_NAMES, MODE_NAMES, \
|
11 |
-
MASK_GENERATION_MODE, BOX_PROMPT_MODE
|
|
|
|
|
12 |
|
13 |
MARKDOWN = """
|
14 |
# Segment Anything Model 2 🔥
|
@@ -31,6 +36,7 @@ Segment Anything Model 2 (SAM 2) is a foundation model designed to address promp
|
|
31 |
visual segmentation in both images and videos. **Video segmentation will be available
|
32 |
soon.**
|
33 |
"""
|
|
|
34 |
EXAMPLES = [
|
35 |
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
|
36 |
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
|
@@ -41,8 +47,37 @@ DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
41 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
42 |
IMAGE_PREDICTORS, MASK_GENERATORS = load_models(device=DEVICE)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
checkpoint_dropdown,
|
47 |
mode_dropdown,
|
48 |
image_input,
|
@@ -79,6 +114,64 @@ def process(
|
|
79 |
return MASK_ANNOTATOR.annotate(image_input, detections)
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
with gr.Blocks() as demo:
|
83 |
gr.Markdown(MARKDOWN)
|
84 |
with gr.Row():
|
@@ -94,7 +187,8 @@ with gr.Blocks() as demo:
|
|
94 |
label="Mode",
|
95 |
info="Select a mode to use. `box prompt` if you want to generate masks for "
|
96 |
"selected objects, `mask generation` if you want to generate masks "
|
97 |
-
"for the whole image
|
|
|
98 |
interactive=True
|
99 |
)
|
100 |
with gr.Row():
|
@@ -102,14 +196,22 @@ with gr.Blocks() as demo:
|
|
102 |
image_input_component = gr.Image(
|
103 |
type='pil', label='Upload image', visible=False)
|
104 |
image_prompter_input_component = ImagePrompter(
|
105 |
-
type='pil', label='
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
value='Submit', variant='primary')
|
|
|
|
|
108 |
with gr.Column():
|
109 |
-
image_output_component = gr.Image(type='pil', label='Image
|
|
|
|
|
110 |
with gr.Row():
|
111 |
gr.Examples(
|
112 |
-
fn=
|
113 |
examples=EXAMPLES,
|
114 |
inputs=[
|
115 |
checkpoint_dropdown_component,
|
@@ -121,23 +223,27 @@ with gr.Blocks() as demo:
|
|
121 |
run_on_click=True
|
122 |
)
|
123 |
|
124 |
-
|
125 |
-
def on_mode_dropdown_change(text):
|
126 |
-
return [
|
127 |
-
gr.Image(visible=text == MASK_GENERATION_MODE),
|
128 |
-
ImagePrompter(visible=text == BOX_PROMPT_MODE)
|
129 |
-
]
|
130 |
-
|
131 |
mode_dropdown_component.change(
|
132 |
on_mode_dropdown_change,
|
133 |
inputs=[mode_dropdown_component],
|
134 |
outputs=[
|
135 |
image_input_component,
|
136 |
-
image_prompter_input_component
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
]
|
138 |
)
|
139 |
-
|
140 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
141 |
inputs=[
|
142 |
checkpoint_dropdown_component,
|
143 |
mode_dropdown_component,
|
@@ -146,5 +252,15 @@ with gr.Blocks() as demo:
|
|
146 |
],
|
147 |
outputs=[image_output_component]
|
148 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
|
|
1 |
+
import os
|
2 |
from typing import Optional
|
3 |
|
4 |
+
import cv2
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import supervision as sv
|
8 |
import torch
|
9 |
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
from gradio_image_prompter import ImagePrompter
|
12 |
|
13 |
from utils.models import load_models, CHECKPOINT_NAMES, MODE_NAMES, \
|
14 |
+
MASK_GENERATION_MODE, BOX_PROMPT_MODE, VIDEO_SEGMENTATION_MODE
|
15 |
+
from utils.video import create_directory, generate_unique_name
|
16 |
+
from sam2.build_sam import build_sam2_video_predictor
|
17 |
|
18 |
MARKDOWN = """
|
19 |
# Segment Anything Model 2 🔥
|
|
|
36 |
visual segmentation in both images and videos. **Video segmentation will be available
|
37 |
soon.**
|
38 |
"""
|
39 |
+
|
40 |
EXAMPLES = [
|
41 |
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
|
42 |
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
|
|
|
47 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
48 |
IMAGE_PREDICTORS, MASK_GENERATORS = load_models(device=DEVICE)
|
49 |
|
50 |
+
SCALE_FACTOR = 0.5
|
51 |
+
TARGET_DIRECTORY = "tmp"
|
52 |
+
# creating video results directory
|
53 |
+
create_directory(directory_path=TARGET_DIRECTORY)
|
54 |
+
|
55 |
+
|
56 |
+
def on_mode_dropdown_change(text):
|
57 |
+
return [
|
58 |
+
gr.Image(visible=text == MASK_GENERATION_MODE),
|
59 |
+
ImagePrompter(visible=text == BOX_PROMPT_MODE),
|
60 |
+
gr.Video(visible=text == VIDEO_SEGMENTATION_MODE),
|
61 |
+
ImagePrompter(visible=text == VIDEO_SEGMENTATION_MODE),
|
62 |
+
gr.Button(visible=text != VIDEO_SEGMENTATION_MODE),
|
63 |
+
gr.Button(visible=text == VIDEO_SEGMENTATION_MODE),
|
64 |
+
gr.Image(visible=text != VIDEO_SEGMENTATION_MODE),
|
65 |
+
gr.Video(visible=text == VIDEO_SEGMENTATION_MODE)
|
66 |
+
]
|
67 |
+
|
68 |
|
69 |
+
def on_video_input_change(video_input):
|
70 |
+
if not video_input:
|
71 |
+
return None
|
72 |
+
frames_generator = sv.get_video_frames_generator(video_input)
|
73 |
+
frame = next(frames_generator)
|
74 |
+
frame = sv.scale_image(frame, SCALE_FACTOR)
|
75 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
76 |
+
frame = Image.fromarray(frame)
|
77 |
+
return {'image': frame, 'points': []}
|
78 |
+
|
79 |
+
|
80 |
+
def process_image(
|
81 |
checkpoint_dropdown,
|
82 |
mode_dropdown,
|
83 |
image_input,
|
|
|
114 |
return MASK_ANNOTATOR.annotate(image_input, detections)
|
115 |
|
116 |
|
117 |
+
def process_video(
|
118 |
+
checkpoint_dropdown,
|
119 |
+
mode_dropdown,
|
120 |
+
video_input,
|
121 |
+
video_prompter_input,
|
122 |
+
progress=gr.Progress(track_tqdm=True)
|
123 |
+
) -> str:
|
124 |
+
if mode_dropdown != VIDEO_SEGMENTATION_MODE:
|
125 |
+
return str(video_input)
|
126 |
+
|
127 |
+
name = generate_unique_name()
|
128 |
+
frame_directory_path = os.path.join(TARGET_DIRECTORY, name)
|
129 |
+
frames_sink = sv.ImageSink(
|
130 |
+
target_dir_path=frame_directory_path,
|
131 |
+
image_name_pattern="{:05d}.jpeg"
|
132 |
+
)
|
133 |
+
|
134 |
+
video_info = sv.VideoInfo.from_video_path(video_input)
|
135 |
+
frames_generator = sv.get_video_frames_generator(video_input)
|
136 |
+
with frames_sink:
|
137 |
+
for frame in tqdm(
|
138 |
+
frames_generator,
|
139 |
+
total=video_info.total_frames,
|
140 |
+
desc="splitting video into frames"
|
141 |
+
):
|
142 |
+
frame = sv.scale_image(frame, SCALE_FACTOR)
|
143 |
+
frames_sink.save_image(frame)
|
144 |
+
|
145 |
+
model = build_sam2_video_predictor(
|
146 |
+
"sam2_hiera_t.yaml",
|
147 |
+
"checkpoints/sam2_hiera_tiny.pt",
|
148 |
+
device=DEVICE
|
149 |
+
)
|
150 |
+
inference_state = model.init_state(
|
151 |
+
video_path=frame_directory_path,
|
152 |
+
offload_video_to_cpu=DEVICE == torch.device('cpu'),
|
153 |
+
offload_state_to_cpu=DEVICE == torch.device('cpu'),
|
154 |
+
)
|
155 |
+
|
156 |
+
prompt = video_prompter_input["points"]
|
157 |
+
points = np.array([[x1, y1] for x1, y1, _, _, _, _ in prompt])
|
158 |
+
labels = np.ones(len(points))
|
159 |
+
|
160 |
+
_, object_ids, mask_logits = model.add_new_points(
|
161 |
+
inference_state=inference_state,
|
162 |
+
frame_idx=0,
|
163 |
+
obj_id=1,
|
164 |
+
points=points,
|
165 |
+
labels=labels,
|
166 |
+
)
|
167 |
+
|
168 |
+
del inference_state
|
169 |
+
del model
|
170 |
+
|
171 |
+
video_path = os.path.join(TARGET_DIRECTORY, f"{name}.mp4")
|
172 |
+
return str(video_input)
|
173 |
+
|
174 |
+
|
175 |
with gr.Blocks() as demo:
|
176 |
gr.Markdown(MARKDOWN)
|
177 |
with gr.Row():
|
|
|
187 |
label="Mode",
|
188 |
info="Select a mode to use. `box prompt` if you want to generate masks for "
|
189 |
"selected objects, `mask generation` if you want to generate masks "
|
190 |
+
"for the whole image, and `video segmentation` if you want to track "
|
191 |
+
"object on video.",
|
192 |
interactive=True
|
193 |
)
|
194 |
with gr.Row():
|
|
|
196 |
image_input_component = gr.Image(
|
197 |
type='pil', label='Upload image', visible=False)
|
198 |
image_prompter_input_component = ImagePrompter(
|
199 |
+
type='pil', label='Prompt image')
|
200 |
+
video_input_component = gr.Video(
|
201 |
+
label='Step 1: Upload video', visible=False)
|
202 |
+
video_prompter_input_component = ImagePrompter(
|
203 |
+
type='pil', label='Step 2: Prompt frame', visible=False)
|
204 |
+
submit_image_button_component = gr.Button(
|
205 |
value='Submit', variant='primary')
|
206 |
+
submit_video_button_component = gr.Button(
|
207 |
+
value='Submit', variant='primary', visible=False)
|
208 |
with gr.Column():
|
209 |
+
image_output_component = gr.Image(type='pil', label='Image output')
|
210 |
+
video_output_component = gr.Video(
|
211 |
+
label='Step 2: Video output', visible=False)
|
212 |
with gr.Row():
|
213 |
gr.Examples(
|
214 |
+
fn=process_image,
|
215 |
examples=EXAMPLES,
|
216 |
inputs=[
|
217 |
checkpoint_dropdown_component,
|
|
|
223 |
run_on_click=True
|
224 |
)
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
mode_dropdown_component.change(
|
227 |
on_mode_dropdown_change,
|
228 |
inputs=[mode_dropdown_component],
|
229 |
outputs=[
|
230 |
image_input_component,
|
231 |
+
image_prompter_input_component,
|
232 |
+
video_input_component,
|
233 |
+
video_prompter_input_component,
|
234 |
+
submit_image_button_component,
|
235 |
+
submit_video_button_component,
|
236 |
+
image_output_component,
|
237 |
+
video_output_component
|
238 |
]
|
239 |
)
|
240 |
+
video_input_component.change(
|
241 |
+
fn=on_video_input_change,
|
242 |
+
inputs=[video_input_component],
|
243 |
+
outputs=[video_prompter_input_component]
|
244 |
+
)
|
245 |
+
submit_image_button_component.click(
|
246 |
+
fn=process_image,
|
247 |
inputs=[
|
248 |
checkpoint_dropdown_component,
|
249 |
mode_dropdown_component,
|
|
|
252 |
],
|
253 |
outputs=[image_output_component]
|
254 |
)
|
255 |
+
submit_video_button_component.click(
|
256 |
+
fn=process_video,
|
257 |
+
inputs=[
|
258 |
+
checkpoint_dropdown_component,
|
259 |
+
mode_dropdown_component,
|
260 |
+
video_input_component,
|
261 |
+
video_prompter_input_component,
|
262 |
+
],
|
263 |
+
outputs=[video_output_component]
|
264 |
+
)
|
265 |
|
266 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
samv2
|
2 |
gradio
|
3 |
supervision
|
|
|
1 |
+
tqdm
|
2 |
samv2
|
3 |
gradio
|
4 |
supervision
|
utils/models.py
CHANGED
@@ -8,7 +8,7 @@ from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
8 |
BOX_PROMPT_MODE = "box prompt"
|
9 |
MASK_GENERATION_MODE = "mask generation"
|
10 |
VIDEO_SEGMENTATION_MODE = "video segmentation"
|
11 |
-
MODE_NAMES = [BOX_PROMPT_MODE, MASK_GENERATION_MODE]
|
12 |
|
13 |
CHECKPOINT_NAMES = ["tiny", "small", "base_plus", "large"]
|
14 |
CHECKPOINTS = {
|
|
|
8 |
BOX_PROMPT_MODE = "box prompt"
|
9 |
MASK_GENERATION_MODE = "mask generation"
|
10 |
VIDEO_SEGMENTATION_MODE = "video segmentation"
|
11 |
+
MODE_NAMES = [BOX_PROMPT_MODE, MASK_GENERATION_MODE, VIDEO_SEGMENTATION_MODE]
|
12 |
|
13 |
CHECKPOINT_NAMES = ["tiny", "small", "base_plus", "large"]
|
14 |
CHECKPOINTS = {
|
utils/video.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import datetime
|
4 |
+
|
5 |
+
|
6 |
+
def create_directory(directory_path: str) -> None:
|
7 |
+
if not os.path.exists(directory_path):
|
8 |
+
os.makedirs(directory_path)
|
9 |
+
|
10 |
+
|
11 |
+
def generate_unique_name():
|
12 |
+
current_datetime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
13 |
+
unique_id = uuid.uuid4()
|
14 |
+
return f"{current_datetime}_{unique_id}"
|