|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
import re |
|
import requests |
|
from io import BytesIO |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat-Int4", device_map="auto", trust_remote_code=True).eval() |
|
|
|
def generate_predictions(image_input, text_input, with_grounding): |
|
user_image_path = "/tmp/user_input_test_image.jpg" |
|
original_image = Image.fromarray((255 - (image_input * 255).astype('uint8'))) |
|
original_image.save(user_image_path) |
|
|
|
if with_grounding == "Yes": |
|
text_input += " with grounding" |
|
|
|
query = tokenizer.from_list_format([ |
|
{'image': user_image_path}, |
|
{'text': text_input}, |
|
]) |
|
inputs = tokenizer(query, return_tensors='pt') |
|
inputs = inputs.to(model.device) |
|
|
|
pred = model.generate(**inputs) |
|
full_response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False) |
|
|
|
frontend_response = re.sub(r'Picture \d+:|<.*?>|\/tmp\/.*\.jpg', '', full_response).replace(text_input, '').strip() |
|
print("Generated Caption:", frontend_response) |
|
|
|
image_with_boxes = tokenizer.draw_bbox_on_latest_picture(full_response) |
|
|
|
|
|
if not re.search(r'\(\d+,\d+\),\(\d+,\d+\)', frontend_response): |
|
image_with_boxes = original_image |
|
|
|
if image_with_boxes: |
|
temp_path = "/tmp/image_with_boxes.jpg" |
|
image_with_boxes.save(temp_path) |
|
image_with_boxes = Image.open(temp_path) |
|
|
|
return image_with_boxes, frontend_response |
|
|
|
iface = gr.Interface( |
|
fn=generate_predictions, |
|
inputs=[ |
|
gr.inputs.Image(label="Image Input"), |
|
gr.inputs.Textbox(default="Generate a caption for that image:", label="Prompt"), |
|
gr.inputs.Radio(["No", "Yes"], label="With Grounding", default="No") |
|
], |
|
outputs=[ |
|
gr.outputs.Image(type='pil', label="Image"), |
|
gr.outputs.Textbox(label="Generated") |
|
], |
|
title="Qwen-VL Demonstration", |
|
description = """ |
|
## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud |
|
**Space by [@Artificialguybr](https://twitter.com/artificialguybr)** |
|
|
|
### Key Features: |
|
- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA. |
|
- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation. |
|
- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding. |
|
""", |
|
) |
|
iface.launch() |
|
|