pyramid-flow / diffusion_schedulers /scheduling_flow_matching.py
multimodalart's picture
Upload 33 files
f0533a5 verified
raw
history blame
11.5 kB
from dataclasses import dataclass
from typing import Optional, Tuple, Union, List
import math
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from IPython import embed
@dataclass
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class PyramidFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Euler scheduler.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co./papers/2305.08891) for more information.
shift (`float`, defaults to 1.0):
The shift value for the timestep schedule.
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0, # Following Stable diffusion 3,
stages: int = 3,
stage_range: List = [0, 1/3, 2/3, 1],
gamma: float = 1/3,
):
self.timestep_ratios = {} # The timestep ratio for each stage
self.timesteps_per_stage = {} # The detailed timesteps per stage
self.sigmas_per_stage = {}
self.start_sigmas = {}
self.end_sigmas = {}
self.ori_start_sigmas = {}
# self.init_sigmas()
self.init_sigmas_for_each_stage()
self.sigma_min = self.sigmas[-1].item()
self.sigma_max = self.sigmas[0].item()
self.gamma = gamma
def init_sigmas(self):
"""
initialize the global timesteps and sigmas
"""
num_train_timesteps = self.config.num_train_timesteps
shift = self.config.shift
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
sigmas = timesteps / num_train_timesteps
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
self.timesteps = sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
def init_sigmas_for_each_stage(self):
"""
Init the timesteps for each stage
"""
self.init_sigmas()
stage_distance = []
stages = self.config.stages
training_steps = self.config.num_train_timesteps
stage_range = self.config.stage_range
# Init the start and end point of each stage
for i_s in range(stages):
# To decide the start and ends point
start_indice = int(stage_range[i_s] * training_steps)
start_indice = max(start_indice, 0)
end_indice = int(stage_range[i_s+1] * training_steps)
end_indice = min(end_indice, training_steps)
start_sigma = self.sigmas[start_indice].item()
end_sigma = self.sigmas[end_indice].item() if end_indice < training_steps else 0.0
self.ori_start_sigmas[i_s] = start_sigma
if i_s != 0:
ori_sigma = 1 - start_sigma
gamma = self.config.gamma
corrected_sigma = (1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)) * ori_sigma
# corrected_sigma = 1 / (2 - ori_sigma) * ori_sigma
start_sigma = 1 - corrected_sigma
stage_distance.append(start_sigma - end_sigma)
self.start_sigmas[i_s] = start_sigma
self.end_sigmas[i_s] = end_sigma
# Determine the ratio of each stage according to flow length
tot_distance = sum(stage_distance)
for i_s in range(stages):
if i_s == 0:
start_ratio = 0.0
else:
start_ratio = sum(stage_distance[:i_s]) / tot_distance
if i_s == stages - 1:
end_ratio = 1.0
else:
end_ratio = sum(stage_distance[:i_s+1]) / tot_distance
self.timestep_ratios[i_s] = (start_ratio, end_ratio)
# Determine the timesteps and sigmas for each stage
for i_s in range(stages):
timestep_ratio = self.timestep_ratios[i_s]
timestep_max = self.timesteps[int(timestep_ratio[0] * training_steps)]
timestep_min = self.timesteps[min(int(timestep_ratio[1] * training_steps), training_steps - 1)]
timesteps = np.linspace(
timestep_max, timestep_min, training_steps + 1,
)
self.timesteps_per_stage[i_s] = torch.from_numpy(timesteps[:-1])
stage_sigmas = np.linspace(
1, 0, training_steps + 1,
)
self.sigmas_per_stage[i_s] = torch.from_numpy(stage_sigmas[:-1])
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def set_timesteps(self, num_inference_steps: int, stage_index: int, device: Union[str, torch.device] = None):
"""
Setting the timesteps and sigmas for each stage
"""
self.num_inference_steps = num_inference_steps
training_steps = self.config.num_train_timesteps
self.init_sigmas()
stage_timesteps = self.timesteps_per_stage[stage_index]
timestep_max = stage_timesteps[0].item()
timestep_min = stage_timesteps[-1].item()
timesteps = np.linspace(
timestep_max, timestep_min, num_inference_steps,
)
self.timesteps = torch.from_numpy(timesteps).to(device=device)
stage_sigmas = self.sigmas_per_stage[stage_index]
sigma_max = stage_sigmas[0].item()
sigma_min = stage_sigmas[-1].item()
ratios = np.linspace(
sigma_max, sigma_min, num_inference_steps
)
sigmas = torch.from_numpy(ratios).to(device=device)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._step_index = 0
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
prev_sample = sample + (sigma_next - sigma) * model_output
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
def __len__(self):
return self.config.num_train_timesteps