from __future__ import annotations import logging from typing import Any import numpy as np import rerun as rr from PIL import Image from tqdm import tqdm logger = logging.getLogger(__name__) def to_rerun(column_name: str, value: Any) -> Any: """Do our best to interpret the value and convert it to a Rerun-compatible archetype.""" if isinstance(value, Image.Image): if "depth" in column_name: return rr.DepthImage(value) else: return rr.Image(value) elif isinstance(value, np.ndarray): return rr.Tensor(value) elif isinstance(value, list): if isinstance(value[0], float): return rr.BarChart(value) else: return rr.TextDocument(str(value)) # Fallback to text elif isinstance(value, float) or isinstance(value, int): return rr.Scalar(value) else: return rr.TextDocument(str(value)) # Fallback to text def log_dataset_to_rerun(dataset: Any) -> None: # Special time-like columns for LeRobot datasets (https://huggingface.co./datasets/lerobot/): TIME_LIKE = {"index", "frame_id", "timestamp"} # Ignore these columns (again, LeRobot-specific): IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"} for row in tqdm(dataset): # Handle time-like columns first, since they set a state (time is an index in Rerun): for column_name in TIME_LIKE: if column_name in row: cell = row[column_name] if isinstance(cell, int): rr.set_time_sequence(column_name, cell) elif isinstance(cell, float): rr.set_time_seconds(column_name, cell) # assume seconds else: print(f"Unknown time-like column {column_name} with value {cell}") # Now log actual data columns: for column_name, cell in row.items(): if column_name in TIME_LIKE or column_name in IGNORE: continue rr.log(column_name, to_rerun(column_name, cell))