Spaces:
Sleeping
Sleeping
Break out the dataset_conversion pieces
Browse files- dataset_conversion.py +57 -0
- main.py +3 -52
dataset_conversion.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import rerun as rr
|
6 |
+
from datasets import load_dataset
|
7 |
+
from PIL import Image
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def to_rerun(column_name: str, value: Any) -> Any:
|
14 |
+
"""Do our best to interpret the value and convert it to a Rerun-compatible archetype."""
|
15 |
+
if isinstance(value, Image.Image):
|
16 |
+
if "depth" in column_name:
|
17 |
+
return rr.DepthImage(value)
|
18 |
+
else:
|
19 |
+
return rr.Image(value)
|
20 |
+
elif isinstance(value, np.ndarray):
|
21 |
+
return rr.Tensor(value)
|
22 |
+
elif isinstance(value, list):
|
23 |
+
if isinstance(value[0], float):
|
24 |
+
return rr.BarChart(value)
|
25 |
+
else:
|
26 |
+
return rr.TextDocument(str(value)) # Fallback to text
|
27 |
+
elif isinstance(value, float) or isinstance(value, int):
|
28 |
+
return rr.Scalar(value)
|
29 |
+
else:
|
30 |
+
return rr.TextDocument(str(value)) # Fallback to text
|
31 |
+
|
32 |
+
|
33 |
+
def log_dataset_to_rerun(dataset: Any) -> None:
|
34 |
+
# Special time-like columns for LeRobot datasets (https://huggingface.co/datasets/lerobot/):
|
35 |
+
TIME_LIKE = {"index", "frame_id", "timestamp"}
|
36 |
+
|
37 |
+
# Ignore these columns (again, LeRobot-specific):
|
38 |
+
IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"}
|
39 |
+
|
40 |
+
for row in tqdm(dataset):
|
41 |
+
# Handle time-like columns first, since they set a state (time is an index in Rerun):
|
42 |
+
for column_name in TIME_LIKE:
|
43 |
+
if column_name in row:
|
44 |
+
cell = row[column_name]
|
45 |
+
if isinstance(cell, int):
|
46 |
+
rr.set_time_sequence(column_name, cell)
|
47 |
+
elif isinstance(cell, float):
|
48 |
+
rr.set_time_seconds(column_name, cell) # assume seconds
|
49 |
+
else:
|
50 |
+
print(f"Unknown time-like column {column_name} with value {cell}")
|
51 |
+
|
52 |
+
# Now log actual data columns:
|
53 |
+
for column_name, cell in row.items():
|
54 |
+
if column_name in TIME_LIKE or column_name in IGNORE:
|
55 |
+
continue
|
56 |
+
|
57 |
+
rr.log(column_name, to_rerun(column_name, cell))
|
main.py
CHANGED
@@ -4,65 +4,16 @@ from __future__ import annotations
|
|
4 |
|
5 |
import argparse
|
6 |
import logging
|
7 |
-
from typing import Any
|
8 |
|
9 |
-
import numpy as np
|
10 |
import rerun as rr
|
11 |
from datasets import load_dataset
|
12 |
-
from PIL import Image
|
13 |
-
from tqdm import tqdm
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
def to_rerun(column_name: str, value: Any) -> Any:
|
19 |
-
"""Do our best to interpret the value and convert it to a Rerun-compatible archetype."""
|
20 |
-
if isinstance(value, Image.Image):
|
21 |
-
if "depth" in column_name:
|
22 |
-
return rr.DepthImage(value)
|
23 |
-
else:
|
24 |
-
return rr.Image(value)
|
25 |
-
elif isinstance(value, np.ndarray):
|
26 |
-
return rr.Tensor(value)
|
27 |
-
elif isinstance(value, list):
|
28 |
-
if isinstance(value[0], float):
|
29 |
-
return rr.BarChart(value)
|
30 |
-
else:
|
31 |
-
return rr.TextDocument(str(value)) # Fallback to text
|
32 |
-
elif isinstance(value, float) or isinstance(value, int):
|
33 |
-
return rr.Scalar(value)
|
34 |
-
else:
|
35 |
-
return rr.TextDocument(str(value)) # Fallback to text
|
36 |
-
|
37 |
-
|
38 |
-
def log_dataset_to_rerun(dataset) -> None:
|
39 |
-
# Special time-like columns for LeRobot datasets (https://huggingface.co/datasets/lerobot/):
|
40 |
-
TIME_LIKE = {"index", "frame_id", "timestamp"}
|
41 |
|
42 |
-
|
43 |
-
IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"}
|
44 |
-
|
45 |
-
for row in tqdm(dataset):
|
46 |
-
# Handle time-like columns first, since they set a state (time is an index in Rerun):
|
47 |
-
for column_name in TIME_LIKE:
|
48 |
-
if column_name in row:
|
49 |
-
cell = row[column_name]
|
50 |
-
if isinstance(cell, int):
|
51 |
-
rr.set_time_sequence(column_name, cell)
|
52 |
-
elif isinstance(cell, float):
|
53 |
-
rr.set_time_seconds(column_name, cell) # assume seconds
|
54 |
-
else:
|
55 |
-
print(f"Unknown time-like column {column_name} with value {cell}")
|
56 |
-
|
57 |
-
# Now log actual data columns:
|
58 |
-
for column_name, cell in row.items():
|
59 |
-
if column_name in TIME_LIKE or column_name in IGNORE:
|
60 |
-
continue
|
61 |
-
|
62 |
-
rr.log(column_name, to_rerun(column_name, cell))
|
63 |
|
64 |
|
65 |
-
def main():
|
66 |
# Ensure the logging gets written to stderr:
|
67 |
logging.getLogger().addHandler(logging.StreamHandler())
|
68 |
logging.getLogger().setLevel(logging.INFO)
|
|
|
4 |
|
5 |
import argparse
|
6 |
import logging
|
|
|
7 |
|
|
|
8 |
import rerun as rr
|
9 |
from datasets import load_dataset
|
|
|
|
|
10 |
|
11 |
+
from dataset_conversion import log_dataset_to_rerun
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
+
def main() -> None:
|
17 |
# Ensure the logging gets written to stderr:
|
18 |
logging.getLogger().addHandler(logging.StreamHandler())
|
19 |
logging.getLogger().setLevel(logging.INFO)
|