preview_dataset / dataset_conversion.py
jleibs's picture
More lints
bd1896f
raw
history blame
2.08 kB
from __future__ import annotations
import logging
from typing import Any
import numpy as np
import rerun as rr
from PIL import Image
from tqdm import tqdm
logger = logging.getLogger(__name__)
def to_rerun(column_name: str, value: Any) -> Any:
"""Do our best to interpret the value and convert it to a Rerun-compatible archetype."""
if isinstance(value, Image.Image):
if "depth" in column_name:
return rr.DepthImage(value)
else:
return rr.Image(value)
elif isinstance(value, np.ndarray):
return rr.Tensor(value)
elif isinstance(value, list):
if isinstance(value[0], float):
return rr.BarChart(value)
else:
return rr.TextDocument(str(value)) # Fallback to text
elif isinstance(value, float) or isinstance(value, int):
return rr.Scalar(value)
else:
return rr.TextDocument(str(value)) # Fallback to text
def log_dataset_to_rerun(dataset: Any) -> None:
# Special time-like columns for LeRobot datasets (https://huggingface.co./datasets/lerobot/):
TIME_LIKE = {"index", "frame_id", "timestamp"}
# Ignore these columns (again, LeRobot-specific):
IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"}
for row in tqdm(dataset):
# Handle time-like columns first, since they set a state (time is an index in Rerun):
for column_name in TIME_LIKE:
if column_name in row:
cell = row[column_name]
if isinstance(cell, int):
rr.set_time_sequence(column_name, cell)
elif isinstance(cell, float):
rr.set_time_seconds(column_name, cell) # assume seconds
else:
print(f"Unknown time-like column {column_name} with value {cell}")
# Now log actual data columns:
for column_name, cell in row.items():
if column_name in TIME_LIKE or column_name in IGNORE:
continue
rr.log(column_name, to_rerun(column_name, cell))