Abhaykoul's picture
Upload 85 files
9e7090f verified
raw
history blame
19.4 kB
import time
import uuid
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.ui import WebDriverWait
import click
import requests
from requests import get
from uuid import uuid4
from re import findall
from requests.exceptions import RequestException
from curl_cffi.requests import get, RequestsError
import g4f
from random import randint
from PIL import Image
import io
import re
import json
import yaml
from ..AIutel import Optimizers
from ..AIutel import Conversation
from ..AIutel import AwesomePrompts, sanitize_stream
from ..AIbase import Provider, AsyncProvider
from Helpingai_T2 import Perplexity
from webscout import exceptions
from typing import Any, AsyncGenerator, Dict
import logging
import httpx
#------------------------------------------------------phind-------------------------------------------------------------
class PhindSearch:
# default_model = "Phind Model"
def __init__(
self,
is_conversation: bool = True,
max_tokens: int = 8000,
timeout: int = 30,
intro: str = None,
filepath: str = None,
update_file: bool = True,
proxies: dict = {},
history_offset: int = 10250,
act: str = None,
model: str = "Phind Model",
quiet: bool = False,
):
"""Instantiates PHIND
Args:
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
timeout (int, optional): Http request timeout. Defaults to 30.
intro (str, optional): Conversation introductory prompt. Defaults to None.
filepath (str, optional): Path to file containing conversation history. Defaults to None.
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
proxies (dict, optional): Http request proxies. Defaults to {}.
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
model (str, optional): Model name. Defaults to "Phind Model".
quiet (bool, optional): Ignore web search-results and yield final response only. Defaults to False.
"""
self.session = requests.Session()
self.max_tokens_to_sample = max_tokens
self.is_conversation = is_conversation
self.chat_endpoint = "https://https.extension.phind.com/agent/"
self.stream_chunk_size = 64
self.timeout = timeout
self.last_response = {}
self.model = model
self.quiet = quiet
self.headers = {
"Content-Type": "application/json",
"User-Agent": "",
"Accept": "*/*",
"Accept-Encoding": "Identity",
}
self.__available_optimizers = (
method
for method in dir(Optimizers)
if callable(getattr(Optimizers, method)) and not method.startswith("__")
)
self.session.headers.update(self.headers)
Conversation.intro = (
AwesomePrompts().get_act(
act, raise_not_found=True, default=None, case_insensitive=True
)
if act
else intro or Conversation.intro
)
self.conversation = Conversation(
is_conversation, self.max_tokens_to_sample, filepath, update_file
)
self.conversation.history_offset = history_offset
self.session.proxies = proxies
def ask(
self,
prompt: str,
stream: bool = False,
raw: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> dict:
"""Chat with AI
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
raw (bool, optional): Stream back raw response as received. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
dict : {}
```json
{
"id": "chatcmpl-r0wujizf2i2xb60mjiwt",
"object": "chat.completion.chunk",
"created": 1706775384,
"model": "trt-llm-phind-model-serving",
"choices": [
{
"index": 0,
"delta": {
"content": "Hello! How can I assist you with your programming today?"
},
"finish_reason": null
}
]
}
```
"""
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
if optimizer:
if optimizer in self.__available_optimizers:
conversation_prompt = getattr(Optimizers, optimizer)(
conversation_prompt if conversationally else prompt
)
else:
raise Exception(
f"Optimizer is not one of {self.__available_optimizers}"
)
self.session.headers.update(self.headers)
payload = {
"additional_extension_context": "",
"allow_magic_buttons": True,
"is_vscode_extension": True,
"message_history": [
{"content": conversation_prompt, "metadata": {}, "role": "user"}
],
"requested_model": self.model,
"user_input": prompt,
}
def for_stream():
response = self.session.post(
self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
)
if (
not response.ok
or not response.headers.get("Content-Type")
== "text/event-stream; charset=utf-8"
):
raise exceptions.FailedToGenerateResponseError(
f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
)
streaming_text = ""
for value in response.iter_lines(
decode_unicode=True,
chunk_size=self.stream_chunk_size,
):
try:
modified_value = re.sub("data:", "", value)
json_modified_value = json.loads(modified_value)
retrieved_text = self.get_message(json_modified_value)
if not retrieved_text:
continue
streaming_text += retrieved_text
json_modified_value["choices"][0]["delta"][
"content"
] = streaming_text
self.last_response.update(json_modified_value)
yield value if raw else json_modified_value
except json.decoder.JSONDecodeError:
pass
self.conversation.update_chat_history(
prompt, self.get_message(self.last_response)
)
def for_non_stream():
for _ in for_stream():
pass
return self.last_response
return for_stream() if stream else for_non_stream()
def chat(
self,
prompt: str,
stream: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> str:
"""Generate response `str`
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
str: Response generated
"""
def for_stream():
for response in self.ask(
prompt, True, optimizer=optimizer, conversationally=conversationally
):
yield self.get_message(response)
def for_non_stream():
return self.get_message(
self.ask(
prompt,
False,
optimizer=optimizer,
conversationally=conversationally,
)
)
return for_stream() if stream else for_non_stream()
def get_message(self, response: dict) -> str:
"""Retrieves message only from response
Args:
response (dict): Response generated by `self.ask`
Returns:
str: Message extracted
"""
assert isinstance(response, dict), "Response should be of dict data-type only"
if response.get("type", "") == "metadata":
return
delta: dict = response["choices"][0]["delta"]
if not delta:
return ""
elif delta.get("function_call"):
if self.quiet:
return ""
function_call: dict = delta["function_call"]
if function_call.get("name"):
return function_call["name"]
elif function_call.get("arguments"):
return function_call.get("arguments")
elif delta.get("metadata"):
if self.quiet:
return ""
return yaml.dump(delta["metadata"])
else:
return (
response["choices"][0]["delta"].get("content")
if response["choices"][0].get("finish_reason") is None
else ""
)
class AsyncPhindSearch(AsyncProvider):
def __init__(
self,
is_conversation: bool = True,
max_tokens: int = 600,
timeout: int = 30,
intro: str = None,
filepath: str = None,
update_file: bool = True,
proxies: dict = {},
history_offset: int = 10250,
act: str = None,
model: str = "Phind Model",
quiet: bool = False,
):
"""Instantiates PHIND
Args:
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
timeout (int, optional): Http request timeout. Defaults to 30.
intro (str, optional): Conversation introductory prompt. Defaults to None.
filepath (str, optional): Path to file containing conversation history. Defaults to None.
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
proxies (dict, optional): Http request proxies. Defaults to {}.
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
model (str, optional): Model name. Defaults to "Phind Model".
quiet (bool, optional): Ignore web search-results and yield final response only. Defaults to False.
"""
self.max_tokens_to_sample = max_tokens
self.is_conversation = is_conversation
self.chat_endpoint = "https://https.extension.phind.com/agent/"
self.stream_chunk_size = 64
self.timeout = timeout
self.last_response = {}
self.model = model
self.quiet = quiet
self.headers = {
"Content-Type": "application/json",
"User-Agent": "",
"Accept": "*/*",
"Accept-Encoding": "Identity",
}
self.__available_optimizers = (
method
for method in dir(Optimizers)
if callable(getattr(Optimizers, method)) and not method.startswith("__")
)
Conversation.intro = (
AwesomePrompts().get_act(
act, raise_not_found=True, default=None, case_insensitive=True
)
if act
else intro or Conversation.intro
)
self.conversation = Conversation(
is_conversation, self.max_tokens_to_sample, filepath, update_file
)
self.conversation.history_offset = history_offset
self.session = httpx.AsyncClient(headers=self.headers, proxies=proxies)
async def ask(
self,
prompt: str,
stream: bool = False,
raw: bool = False,
optimizer: str = None,
conversationally: bool = False,
synchronous_generator=False,
) -> dict | AsyncGenerator:
"""Asynchronously Chat with AI
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
raw (bool, optional): Stream back raw response as received. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
dict|AsyncGenerator : ai content.
```json
{
"id": "chatcmpl-r0wujizf2i2xb60mjiwt",
"object": "chat.completion.chunk",
"created": 1706775384,
"model": "trt-llm-phind-model-serving",
"choices": [
{
"index": 0,
"delta": {
"content": "Hello! How can I assist you with your programming today?"
},
"finish_reason": null
}
]
}
```
"""
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
if optimizer:
if optimizer in self.__available_optimizers:
conversation_prompt = getattr(Optimizers, optimizer)(
conversation_prompt if conversationally else prompt
)
else:
raise Exception(
f"Optimizer is not one of {self.__available_optimizers}"
)
payload = {
"additional_extension_context": "",
"allow_magic_buttons": True,
"is_vscode_extension": True,
"message_history": [
{"content": conversation_prompt, "metadata": {}, "role": "user"}
],
"requested_model": self.model,
"user_input": prompt,
}
async def for_stream():
async with self.session.stream(
"POST",
self.chat_endpoint,
json=payload,
timeout=self.timeout,
) as response:
if (
not response.is_success
or not response.headers.get("Content-Type")
== "text/event-stream; charset=utf-8"
):
raise exceptions.FailedToGenerateResponseError(
f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
)
streaming_text = ""
async for value in response.aiter_lines():
try:
modified_value = re.sub("data:", "", value)
json_modified_value = json.loads(modified_value)
retrieved_text = await self.get_message(json_modified_value)
if not retrieved_text:
continue
streaming_text += retrieved_text
json_modified_value["choices"][0]["delta"][
"content"
] = streaming_text
self.last_response.update(json_modified_value)
yield value if raw else json_modified_value
except json.decoder.JSONDecodeError:
pass
self.conversation.update_chat_history(
prompt, await self.get_message(self.last_response)
)
async def for_non_stream():
async for _ in for_stream():
pass
return self.last_response
return (
for_stream()
if stream and not synchronous_generator
else await for_non_stream()
)
async def chat(
self,
prompt: str,
stream: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> str | AsyncGenerator:
"""Generate response `str`
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
str|AsyncGenerator: Response generated
"""
async def for_stream():
ask_resp = await self.ask(
prompt, True, optimizer=optimizer, conversationally=conversationally
)
async for response in ask_resp:
yield await self.get_message(response)
async def for_non_stream():
return await self.get_message(
await self.ask(
prompt,
False,
optimizer=optimizer,
conversationally=conversationally,
)
)
return for_stream() if stream else await for_non_stream()
async def get_message(self, response: dict) -> str:
"""Retrieves message only from response
Args:
response (dict): Response generated by `self.ask`
Returns:
str: Message extracted
"""
assert isinstance(response, dict), "Response should be of dict data-type only"
if response.get("type", "") == "metadata":
return
delta: dict = response["choices"][0]["delta"]
if not delta:
return ""
elif delta.get("function_call"):
if self.quiet:
return ""
function_call: dict = delta["function_call"]
if function_call.get("name"):
return function_call["name"]
elif function_call.get("arguments"):
return function_call.get("arguments")
elif delta.get("metadata"):
if self.quiet:
return ""
return yaml.dump(delta["metadata"])
else:
return (
response["choices"][0]["delta"].get("content")
if response["choices"][0].get("finish_reason") is None
else ""
)