|
import requests |
|
from typing import Any, AsyncGenerator, Dict, Optional |
|
import json |
|
import re |
|
|
|
from ..AIutel import Optimizers |
|
from ..AIutel import Conversation |
|
from ..AIutel import AwesomePrompts, sanitize_stream |
|
from ..AIbase import Provider, AsyncProvider |
|
from webscout import exceptions |
|
|
|
|
|
class ChatGPTUK(Provider): |
|
""" |
|
A class to interact with the ChatGPT UK API. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
is_conversation: bool = True, |
|
max_tokens: int = 600, |
|
temperature: float = 0.9, |
|
presence_penalty: float = 0, |
|
frequency_penalty: float = 0, |
|
top_p: float = 1, |
|
model: str = "google-gemini-pro", |
|
timeout: int = 30, |
|
intro: str = None, |
|
filepath: str = None, |
|
update_file: bool = True, |
|
proxies: dict = {}, |
|
history_offset: int = 10250, |
|
act: str = None, |
|
) -> None: |
|
""" |
|
Initializes the ChatGPTUK API with given parameters. |
|
|
|
Args: |
|
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True. |
|
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600. |
|
temperature (float, optional): Charge of the generated text's randomness. Defaults to 0.9. |
|
presence_penalty (float, optional): Chances of topic being repeated. Defaults to 0. |
|
frequency_penalty (float, optional): Chances of word being repeated. Defaults to 0. |
|
top_p (float, optional): Sampling threshold during inference time. Defaults to 1. |
|
model (str, optional): LLM model name. Defaults to "google-gemini-pro". |
|
timeout (int, optional): Http request timeout. Defaults to 30. |
|
intro (str, optional): Conversation introductory prompt. Defaults to None. |
|
filepath (str, optional): Path to file containing conversation history. Defaults to None. |
|
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True. |
|
proxies (dict, optional): Http request proxies. Defaults to {}. |
|
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250. |
|
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None. |
|
""" |
|
self.session = requests.Session() |
|
self.is_conversation = is_conversation |
|
self.max_tokens_to_sample = max_tokens |
|
self.api_endpoint = "https://free.chatgpt.org.uk/api/openai/v1/chat/completions" |
|
self.stream_chunk_size = 64 |
|
self.timeout = timeout |
|
self.last_response = {} |
|
self.model = model |
|
self.temperature = temperature |
|
self.presence_penalty = presence_penalty |
|
self.frequency_penalty = frequency_penalty |
|
self.top_p = top_p |
|
self.headers = {"Content-Type": "application/json"} |
|
|
|
self.__available_optimizers = ( |
|
method |
|
for method in dir(Optimizers) |
|
if callable(getattr(Optimizers, method)) and not method.startswith("__") |
|
) |
|
self.session.headers.update(self.headers) |
|
Conversation.intro = ( |
|
AwesomePrompts().get_act( |
|
act, raise_not_found=True, default=None, case_insensitive=True |
|
) |
|
if act |
|
else intro or Conversation.intro |
|
) |
|
self.conversation = Conversation( |
|
is_conversation, self.max_tokens_to_sample, filepath, update_file |
|
) |
|
self.conversation.history_offset = history_offset |
|
self.session.proxies = proxies |
|
|
|
def ask( |
|
self, |
|
prompt: str, |
|
stream: bool = False, |
|
raw: bool = False, |
|
optimizer: str = None, |
|
conversationally: bool = False, |
|
) -> dict: |
|
"""Chat with AI |
|
|
|
Args: |
|
prompt (str): Prompt to be send. |
|
stream (bool, optional): Flag for streaming response. Defaults to False. |
|
raw (bool, optional): Stream back raw response as received. Defaults to False. |
|
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None. |
|
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False. |
|
Returns: |
|
dict : {} |
|
```json |
|
{ |
|
"text" : "How may I assist you today?" |
|
} |
|
``` |
|
""" |
|
conversation_prompt = self.conversation.gen_complete_prompt(prompt) |
|
if optimizer: |
|
if optimizer in self.__available_optimizers: |
|
conversation_prompt = getattr(Optimizers, optimizer)( |
|
conversation_prompt if conversationally else prompt |
|
) |
|
else: |
|
raise Exception( |
|
f"Optimizer is not one of {self.__available_optimizers}" |
|
) |
|
|
|
self.session.headers.update(self.headers) |
|
payload = { |
|
"messages": [ |
|
{"role": "system", "content": "Keep your responses long and detailed"}, |
|
{"role": "user", "content": conversation_prompt} |
|
], |
|
"stream": True, |
|
"model": self.model, |
|
"temperature": self.temperature, |
|
"presence_penalty": self.presence_penalty, |
|
"frequency_penalty": self.frequency_penalty, |
|
"top_p": self.top_p, |
|
"max_tokens": self.max_tokens_to_sample |
|
} |
|
|
|
def for_stream(): |
|
response = self.session.post( |
|
self.api_endpoint, json=payload, stream=True, timeout=self.timeout |
|
) |
|
if not response.ok: |
|
raise exceptions.FailedToGenerateResponseError( |
|
f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}" |
|
) |
|
|
|
streaming_response = "" |
|
for line in response.iter_lines(decode_unicode=True, chunk_size=1): |
|
if line: |
|
modified_line = re.sub("data:", "", line) |
|
try: |
|
json_data = json.loads(modified_line) |
|
content = json_data['choices'][0]['delta']['content'] |
|
streaming_response += content |
|
yield content if raw else dict(text=streaming_response) |
|
except: |
|
continue |
|
self.last_response.update(dict(text=streaming_response)) |
|
self.conversation.update_chat_history( |
|
prompt, self.get_message(self.last_response) |
|
) |
|
|
|
def for_non_stream(): |
|
for _ in for_stream(): |
|
pass |
|
return self.last_response |
|
|
|
return for_stream() if stream else for_non_stream() |
|
|
|
def chat( |
|
self, |
|
prompt: str, |
|
stream: bool = False, |
|
optimizer: str = None, |
|
conversationally: bool = False, |
|
) -> str: |
|
"""Generate response `str` |
|
Args: |
|
prompt (str): Prompt to be send. |
|
stream (bool, optional): Flag for streaming response. Defaults to False. |
|
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None. |
|
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False. |
|
Returns: |
|
str: Response generated |
|
""" |
|
|
|
def for_stream(): |
|
for response in self.ask( |
|
prompt, True, optimizer=optimizer, conversationally=conversationally |
|
): |
|
yield self.get_message(response) |
|
|
|
def for_non_stream(): |
|
return self.get_message( |
|
self.ask( |
|
prompt, |
|
False, |
|
optimizer=optimizer, |
|
conversationally=conversationally, |
|
) |
|
) |
|
|
|
return for_stream() if stream else for_non_stream() |
|
|
|
def get_message(self, response: dict) -> str: |
|
"""Retrieves message only from response |
|
|
|
Args: |
|
response (dict): Response generated by `self.ask` |
|
|
|
Returns: |
|
str: Message extracted |
|
""" |
|
assert isinstance(response, dict), "Response should be of dict data-type only" |
|
return response["text"] |