Webscout / webscout /Provider /ChatGPTUK.py
Abhaykoul's picture
Upload 85 files
9e7090f verified
raw
history blame
8.36 kB
import requests
from typing import Any, AsyncGenerator, Dict, Optional
import json
import re
from ..AIutel import Optimizers
from ..AIutel import Conversation
from ..AIutel import AwesomePrompts, sanitize_stream
from ..AIbase import Provider, AsyncProvider
from webscout import exceptions
class ChatGPTUK(Provider):
"""
A class to interact with the ChatGPT UK API.
"""
def __init__(
self,
is_conversation: bool = True,
max_tokens: int = 600,
temperature: float = 0.9,
presence_penalty: float = 0,
frequency_penalty: float = 0,
top_p: float = 1,
model: str = "google-gemini-pro",
timeout: int = 30,
intro: str = None,
filepath: str = None,
update_file: bool = True,
proxies: dict = {},
history_offset: int = 10250,
act: str = None,
) -> None:
"""
Initializes the ChatGPTUK API with given parameters.
Args:
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
temperature (float, optional): Charge of the generated text's randomness. Defaults to 0.9.
presence_penalty (float, optional): Chances of topic being repeated. Defaults to 0.
frequency_penalty (float, optional): Chances of word being repeated. Defaults to 0.
top_p (float, optional): Sampling threshold during inference time. Defaults to 1.
model (str, optional): LLM model name. Defaults to "google-gemini-pro".
timeout (int, optional): Http request timeout. Defaults to 30.
intro (str, optional): Conversation introductory prompt. Defaults to None.
filepath (str, optional): Path to file containing conversation history. Defaults to None.
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
proxies (dict, optional): Http request proxies. Defaults to {}.
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
"""
self.session = requests.Session()
self.is_conversation = is_conversation
self.max_tokens_to_sample = max_tokens
self.api_endpoint = "https://free.chatgpt.org.uk/api/openai/v1/chat/completions"
self.stream_chunk_size = 64
self.timeout = timeout
self.last_response = {}
self.model = model
self.temperature = temperature
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.top_p = top_p
self.headers = {"Content-Type": "application/json"}
self.__available_optimizers = (
method
for method in dir(Optimizers)
if callable(getattr(Optimizers, method)) and not method.startswith("__")
)
self.session.headers.update(self.headers)
Conversation.intro = (
AwesomePrompts().get_act(
act, raise_not_found=True, default=None, case_insensitive=True
)
if act
else intro or Conversation.intro
)
self.conversation = Conversation(
is_conversation, self.max_tokens_to_sample, filepath, update_file
)
self.conversation.history_offset = history_offset
self.session.proxies = proxies
def ask(
self,
prompt: str,
stream: bool = False,
raw: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> dict:
"""Chat with AI
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
raw (bool, optional): Stream back raw response as received. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
dict : {}
```json
{
"text" : "How may I assist you today?"
}
```
"""
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
if optimizer:
if optimizer in self.__available_optimizers:
conversation_prompt = getattr(Optimizers, optimizer)(
conversation_prompt if conversationally else prompt
)
else:
raise Exception(
f"Optimizer is not one of {self.__available_optimizers}"
)
self.session.headers.update(self.headers)
payload = {
"messages": [
{"role": "system", "content": "Keep your responses long and detailed"},
{"role": "user", "content": conversation_prompt}
],
"stream": True,
"model": self.model,
"temperature": self.temperature,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"top_p": self.top_p,
"max_tokens": self.max_tokens_to_sample
}
def for_stream():
response = self.session.post(
self.api_endpoint, json=payload, stream=True, timeout=self.timeout
)
if not response.ok:
raise exceptions.FailedToGenerateResponseError(
f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
)
streaming_response = ""
for line in response.iter_lines(decode_unicode=True, chunk_size=1):
if line:
modified_line = re.sub("data:", "", line)
try:
json_data = json.loads(modified_line)
content = json_data['choices'][0]['delta']['content']
streaming_response += content
yield content if raw else dict(text=streaming_response)
except:
continue
self.last_response.update(dict(text=streaming_response))
self.conversation.update_chat_history(
prompt, self.get_message(self.last_response)
)
def for_non_stream():
for _ in for_stream():
pass
return self.last_response
return for_stream() if stream else for_non_stream()
def chat(
self,
prompt: str,
stream: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> str:
"""Generate response `str`
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
str: Response generated
"""
def for_stream():
for response in self.ask(
prompt, True, optimizer=optimizer, conversationally=conversationally
):
yield self.get_message(response)
def for_non_stream():
return self.get_message(
self.ask(
prompt,
False,
optimizer=optimizer,
conversationally=conversationally,
)
)
return for_stream() if stream else for_non_stream()
def get_message(self, response: dict) -> str:
"""Retrieves message only from response
Args:
response (dict): Response generated by `self.ask`
Returns:
str: Message extracted
"""
assert isinstance(response, dict), "Response should be of dict data-type only"
return response["text"]