File size: 11,616 Bytes
9e7090f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import time
import uuid
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.ui import WebDriverWait
import click
import requests
from requests import get
from uuid import uuid4
from re import findall
from requests.exceptions import RequestException
from curl_cffi.requests import get, RequestsError
import g4f
from random import randint
from PIL import Image
import io
import re
import json
import yaml
from ..AIutel import Optimizers
from ..AIutel import Conversation
from ..AIutel import AwesomePrompts, sanitize_stream
from ..AIbase import  Provider, AsyncProvider
from Helpingai_T2 import Perplexity
from webscout import exceptions
from typing import Any, AsyncGenerator, Dict
import logging
import httpx
#------------------------------------ThinkAnyAI------------
class ThinkAnyAI(Provider):
    def __init__(

        self,

        model: str = "claude-3-haiku",

        locale: str = "en",

        web_search: bool = False,

        chunk_size: int = 1,

        streaming: bool = True,

        is_conversation: bool = True,

        max_tokens: int = 600,

        timeout: int = 30,

        intro: str = None,

        filepath: str = None,

        update_file: bool = True,

        proxies: dict = {},

        history_offset: int = 10250,

        act: str = None,

    ):
        """Initializes ThinkAnyAI



        Args:

            model (str): The AI model to be used for generating responses. Defaults to "claude-3-haiku".

            locale (str): The language locale. Defaults to "en" (English).

            web_search (bool): Whether to include web search results in the response. Defaults to False.

            chunk_size (int): The size of data chunks when streaming responses. Defaults to 1.

            streaming (bool): Whether to stream response data. Defaults to True.

            is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.

            max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.

            timeout (int, optional): Http request timeout. Defaults to 30.

            intro (str, optional): Conversation introductory prompt. Defaults to None.

            filepath (str, optional): Path to file containing conversation history. Defaults to None.

            update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.

            proxies (dict, optional): Http request proxies. Defaults to {}.

            history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.

            act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.

        """
        self.base_url = "https://thinkany.ai/api"
        self.model = model
        self.locale = locale
        self.web_search = web_search
        self.chunk_size = chunk_size
        self.streaming = streaming
        self.last_response = {}
        self.session = requests.Session()
        self.session.proxies = proxies

        self.__available_optimizers = (
            method
            for method in dir(Optimizers)
            if callable(getattr(Optimizers, method)) and not method.startswith("__")
        )

        Conversation.intro = (
            AwesomePrompts().get_act(
                act, raise_not_found=True, default=None, case_insensitive=True
            )
            if act
            else intro or Conversation.intro
        )
        self.conversation = Conversation(
            is_conversation, max_tokens, filepath, update_file
        )
        self.conversation.history_offset = history_offset

    def ask(

        self,

        prompt: str,

        stream: bool = False,

        raw: bool = False,

        optimizer: str = None,

        conversationally: bool = False,

    ) -> dict | AsyncGenerator:
        """Chat with AI asynchronously.



            Args:

                prompt (str): Prompt to be send.

                stream (bool, optional): Flag for streaming response. Defaults to False.

                raw (bool, optional): Stream back raw response as received. Defaults to False.

                optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defeaults to None

                conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.

            Returns:

                dict : {}

            ```json

            {

                "content": "General Kenobi! \n\n(I couldn't help but respond with the iconic Star Wars greeting since you used it first. )\n\nIs there anything I can help you with today?\n[Image of Hello there General Kenobi]",

                "conversation_id": "c_f13f6217f9a997aa",

                "response_id": "r_d3665f95975c368f",

                "factualityQueries": null,

                "textQuery": [

                    "hello there",

                    1

                    ],

                "choices": [

                    {

                        "id": "rc_ea075c9671bfd8cb",

                        "content": [

                            "General Kenobi! \n\n(I couldn't help but respond with the iconic Star Wars greeting since you used it first. )\n\nIs there anything I can help you with today?\n[Image of Hello there General Kenobi]"

                        ]

                    },

                    {

                        "id": "rc_de6dd3fb793a5402",

                        "content": [

                            "General Kenobi! (or just a friendly hello, whichever you prefer!). \n\nI see you're a person of culture as well. *Star Wars* references are always appreciated.  \n\nHow can I help you today?\n"

                            ]

                    },

                {

                    "id": "rc_a672ac089caf32db",

                    "content": [

                        "General Kenobi! (or just a friendly hello if you're not a Star Wars fan!). \n\nHow can I help you today? Feel free to ask me anything, or tell me what you'd like to chat about. I'm here to assist in any way I can.\n[Image of Obi-Wan Kenobi saying hello there]"

                    ]

                }

            ],



            "images": [

                "https://i.pinimg.com/originals/40/74/60/407460925c9e419d82b93313f0b42f71.jpg"

            ]

        }



            ```

        """
        conversation_prompt = self.conversation.gen_complete_prompt(prompt)
        if optimizer:
            if optimizer in self.__available_optimizers:
                conversation_prompt = getattr(Optimizers, optimizer)(
                    conversation_prompt if conversationally else prompt
                )
            else:
                raise Exception(
                    f"Optimizer is not one of {self.__available_optimizers}"
                )

        def initiate_conversation(query: str) -> str:
            """

            Initiates a new conversation with the ThinkAny AI API.



            Args:

                query (str): The initial query to start the conversation.



            Returns:

                str: The UUID (Unique Identifier) of the conversation.

            """
            url = f"{self.base_url}/new-conversation"
            payload = {
                "content": query,
                "locale": self.locale,
                "mode": "search" if self.web_search else "chat",
                "model": self.model,
                "source": "all",
            }
            response = self.session.post(url, json=payload)
            return response.json().get("data", {}).get("uuid", "DevsDoCode")

        def RAG_search(uuid: str) -> tuple[bool, list]:
            """

            Performs a web search using the Retrieve And Generate (RAG) model.



            Args:

                uuid (str): The UUID of the conversation.



            Returns:

                tuple: A tuple containing a boolean indicating the success of the search

                        and a list of search result links.

            """
            if not self.web_search:
                return True, []
            url = f"{self.base_url}/rag-search"
            payload = {"conv_uuid": uuid}
            response = self.session.post(url, json=payload)
            links = [source["link"] for source in response.json().get("data", [])]
            return response.json().get("message", "").strip(), links

        def for_stream():
            conversation_uuid = initiate_conversation(conversation_prompt)
            web_search_result, links = RAG_search(conversation_uuid)
            if not web_search_result:
                print("Failed to generate WEB response. Making normal Query...")

            url = f"{self.base_url}/chat"
            payload = {
                "role": "user",
                "content": prompt,
                "conv_uuid": conversation_uuid,
                "model": self.model,
            }
            response = self.session.post(url, json=payload, stream=True)
            complete_content = ""
            for content in response.iter_content(
                decode_unicode=True, chunk_size=self.chunk_size
            ):
                complete_content += content
                yield content if raw else dict(text=complete_content)
            self.last_response.update(dict(text=complete_content, links=links))
            self.conversation.update_chat_history(
                prompt, self.get_message(self.last_response)
            )

        def for_non_stream():
            for _ in for_stream():
                pass
            return self.last_response

        return for_stream() if stream else for_non_stream()

    def chat(

        self,

        prompt: str,

        stream: bool = False,

        optimizer: str = None,

        conversationally: bool = False,

    ) -> str:
        """Generate response `str`

        Args:

            prompt (str): Prompt to be send.

            stream (bool, optional): Flag for streaming response. Defaults to False.

            optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.

            conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.

        Returns:

            str: Response generated

        """

        def for_stream():
            for response in self.ask(
                prompt, True, optimizer=optimizer, conversationally=conversationally
            ):
                yield self.get_message(response)

        def for_non_stream():
            return self.get_message(
                self.ask(
                    prompt,
                    False,
                    optimizer=optimizer,
                    conversationally=conversationally,
                )
            )

        return for_stream() if stream else for_non_stream()

    def get_message(self, response: Dict[str, Any]) -> str:
        """Retrieves message only from response



        Args:

            response (dict): Response generated by `self.ask`



        Returns:

            str: Message extracted

        """
        assert isinstance(response, dict), "Response should be of dict data-type only"
        return response["text"]