File size: 8,597 Bytes
9e7090f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import time
import uuid
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.ui import WebDriverWait
import click
import requests
from requests import get
from uuid import uuid4
from re import findall
from requests.exceptions import RequestException
from curl_cffi.requests import get, RequestsError
import g4f
from random import randint
from PIL import Image
import io
import re
import json
import yaml
from ..AIutel import Optimizers
from ..AIutel import Conversation
from ..AIutel import AwesomePrompts, sanitize_stream
from ..AIbase import Provider, AsyncProvider
from Helpingai_T2 import Perplexity
from webscout import exceptions
from typing import Any, AsyncGenerator, Dict
import logging
import httpx
#------------------------------------------------------PERPLEXITY--------------------------------------------------------
class PERPLEXITY(Provider):
def __init__(
self,
is_conversation: bool = True,
max_tokens: int = 600,
timeout: int = 30,
intro: str = None,
filepath: str = None,
update_file: bool = True,
proxies: dict = {},
history_offset: int = 10250,
act: str = None,
quiet: bool = False,
):
"""Instantiates PERPLEXITY
Args:
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
timeout (int, optional): Http request timeout. Defaults to 30.
intro (str, optional): Conversation introductory prompt. Defaults to None.
filepath (str, optional): Path to file containing conversation history. Defaults to None.
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
proxies (dict, optional): Http request proxies. Defaults to {}.
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
quiet (bool, optional): Ignore web search-results and yield final response only. Defaults to False.
"""
self.max_tokens_to_sample = max_tokens
self.is_conversation = is_conversation
self.last_response = {}
self.web_results: dict = {}
self.quiet = quiet
self.__available_optimizers = (
method
for method in dir(Optimizers)
if callable(getattr(Optimizers, method)) and not method.startswith("__")
)
Conversation.intro = (
AwesomePrompts().get_act(
act, raise_not_found=True, default=None, case_insensitive=True
)
if act
else intro or Conversation.intro
)
self.conversation = Conversation(
is_conversation, self.max_tokens_to_sample, filepath, update_file
)
self.conversation.history_offset = history_offset
def ask(
self,
prompt: str,
stream: bool = False,
raw: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> dict:
"""Chat with AI
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
raw (bool, optional): Stream back raw response as received. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
dict : {}
```json
{
"status": "pending",
"uuid": "3604dfcc-611f-4b7d-989d-edca2a7233c7",
"read_write_token": null,
"frontend_context_uuid": "f6d43119-5231-481d-b692-f52e1f52d2c6",
"final": false,
"backend_uuid": "a6d6ec9e-da69-4841-af74-0de0409267a8",
"media_items": [],
"widget_data": [],
"knowledge_cards": [],
"expect_search_results": "false",
"mode": "concise",
"search_focus": "internet",
"gpt4": false,
"display_model": "turbo",
"attachments": null,
"answer": "",
"web_results": [],
"chunks": [],
"extra_web_results": []
}
```
"""
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
if optimizer:
if optimizer in self.__available_optimizers:
conversation_prompt = getattr(Optimizers, optimizer)(
conversation_prompt if conversationally else prompt
)
else:
raise Exception(
f"Optimizer is not one of {self.__available_optimizers}"
)
def for_stream():
for response in Perplexity().generate_answer(conversation_prompt):
yield json.dumps(response) if raw else response
self.last_response.update(response)
self.conversation.update_chat_history(
prompt,
self.get_message(self.last_response),
)
def for_non_stream():
for _ in for_stream():
pass
return self.last_response
return for_stream() if stream else for_non_stream()
def chat(
self,
prompt: str,
stream: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> str:
"""Generate response `str`
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
str: Response generated
"""
def for_stream():
for response in self.ask(
prompt, True, optimizer=optimizer, conversationally=conversationally
):
yield self.get_message(response)
def for_non_stream():
return self.get_message(
self.ask(
prompt,
False,
optimizer=optimizer,
conversationally=conversationally,
)
)
return for_stream() if stream else for_non_stream()
def get_message(self, response: dict) -> str:
"""Retrieves message only from response
Args:
response (dict): Response generated by `self.ask`
Returns:
str: Message extracted
"""
assert isinstance(response, dict), "Response should be of dict data-type only"
text_str: str = response.get("answer", "")
def update_web_results(web_results: list) -> None:
for index, results in enumerate(web_results, start=1):
self.web_results[str(index) + ". " + results["name"]] = dict(
url=results.get("url"), snippet=results.get("snippet")
)
if response.get("text"):
# last chunk
target: dict[str, Any] = json.loads(response.get("text"))
text_str = target.get("answer")
web_results: list[dict] = target.get("web_results")
self.web_results.clear()
update_web_results(web_results)
return (
text_str
if self.quiet or not self.web_results
else text_str + "\n\n# WEB-RESULTS\n\n" + yaml.dump(self.web_results)
)
else:
if str(response.get("expect_search_results")).lower() == "true":
return (
text_str
if self.quiet
else text_str
+ "\n\n# WEB-RESULTS\n\n"
+ yaml.dump(response.get("web_results"))
)
else:
return text_str |