File size: 20,107 Bytes
9e7090f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import time
import uuid
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.ui import WebDriverWait
import click
import requests
from requests import get
from uuid import uuid4
from re import findall
from requests.exceptions import RequestException
from curl_cffi.requests import get, RequestsError
import g4f
from random import randint
from PIL import Image
import io
import re
import json
import yaml
from ..AIutel import Optimizers
from ..AIutel import Conversation
from ..AIutel import AwesomePrompts, sanitize_stream
from ..AIbase import  Provider, AsyncProvider
from Helpingai_T2 import Perplexity
from webscout import exceptions
from typing import Any, AsyncGenerator, Dict
import logging
import httpx
#----------------------------------------------------------OpenAI-----------------------------------
class OPENAI(Provider):
    def __init__(
        self,
        api_key: str,
        is_conversation: bool = True,
        max_tokens: int = 600,
        temperature: float = 1,
        presence_penalty: int = 0,
        frequency_penalty: int = 0,
        top_p: float = 1,
        model: str = "gpt-3.5-turbo",
        timeout: int = 30,
        intro: str = None,
        filepath: str = None,
        update_file: bool = True,
        proxies: dict = {},
        history_offset: int = 10250,
        act: str = None,
    ):
        """Instantiates OPENAI

        Args:
            api_key (key): OpenAI's API key.
            is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
            max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
            temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
            presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
            frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
            top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
            model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
            timeout (int, optional): Http request timeout. Defaults to 30.
            intro (str, optional): Conversation introductory prompt. Defaults to None.
            filepath (str, optional): Path to file containing conversation history. Defaults to None.
            update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
            proxies (dict, optional): Http request proxies. Defaults to {}.
            history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
            act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
        """
        self.is_conversation = is_conversation
        self.max_tokens_to_sample = max_tokens
        self.api_key = api_key
        self.model = model
        self.temperature = temperature
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty
        self.top_p = top_p
        self.chat_endpoint = "https://api.openai.com/v1/chat/completions"
        self.stream_chunk_size = 64
        self.timeout = timeout
        self.last_response = {}
        self.headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}",
        }

        self.__available_optimizers = (
            method
            for method in dir(Optimizers)
            if callable(getattr(Optimizers, method)) and not method.startswith("__")
        )
        self.session.headers.update(self.headers)
        Conversation.intro = (
            AwesomePrompts().get_act(
                act, raise_not_found=True, default=None, case_insensitive=True
            )
            if act
            else intro or Conversation.intro
        )
        self.conversation = Conversation(
            is_conversation, self.max_tokens_to_sample, filepath, update_file
        )
        self.conversation.history_offset = history_offset
        self.session.proxies = proxies

    def ask(
        self,
        prompt: str,
        stream: bool = False,
        raw: bool = False,
        optimizer: str = None,
        conversationally: bool = False,
    ) -> dict:
        """Chat with AI

        Args:
            prompt (str): Prompt to be send.
            stream (bool, optional): Flag for streaming response. Defaults to False.
            raw (bool, optional): Stream back raw response as received. Defaults to False.
            optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
            conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
        Returns:
           dict : {}
        ```json
        {
            "id": "chatcmpl-TaREJpBZsRVQFRFic1wIA7Q7XfnaD",
            "object": "chat.completion",
            "created": 1704623244,
            "model": "gpt-3.5-turbo",
            "usage": {
                "prompt_tokens": 0,
                "completion_tokens": 0,
                "total_tokens": 0
                },
            "choices": [
                {
                    "message": {
                        "role": "assistant",
                        "content": "Hello! How can I assist you today?"
                },
                "finish_reason": "stop",
                "index": 0
                }
            ]
        }
        ```
        """
        conversation_prompt = self.conversation.gen_complete_prompt(prompt)
        if optimizer:
            if optimizer in self.__available_optimizers:
                conversation_prompt = getattr(Optimizers, optimizer)(
                    conversation_prompt if conversationally else prompt
                )
            else:
                raise exceptions.FailedToGenerateResponseError(
                    f"Optimizer is not one of {self.__available_optimizers}"
                )
        self.session.headers.update(self.headers)
        payload = {
            "frequency_penalty": self.frequency_penalty,
            "messages": [{"content": conversation_prompt, "role": "user"}],
            "model": self.model,
            "presence_penalty": self.presence_penalty,
            "stream": stream,
            "temperature": self.temperature,
            "top_p": self.top_p,
        }

        def for_stream():
            response = self.session.post(
                self.chat_endpoint, json=payload, stream=True, timeout=self.timeout
            )
            if not response.ok:
                raise exceptions.FailedToGenerateResponseError(
                    f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
                )

            message_load = ""
            for value in response.iter_lines(
                decode_unicode=True,
                delimiter="" if raw else "data:",
                chunk_size=self.stream_chunk_size,
            ):
                try:
                    resp = json.loads(value)
                    incomplete_message = self.get_message(resp)
                    if incomplete_message:
                        message_load += incomplete_message
                        resp["choices"][0]["delta"]["content"] = message_load
                        self.last_response.update(resp)
                        yield value if raw else resp
                    elif raw:
                        yield value
                except json.decoder.JSONDecodeError:
                    pass
            self.conversation.update_chat_history(
                prompt, self.get_message(self.last_response)
            )

        def for_non_stream():
            response = self.session.post(
                self.chat_endpoint, json=payload, stream=False, timeout=self.timeout
            )
            if (
                not response.ok
                or not response.headers.get("Content-Type", "") == "application/json"
            ):
                raise exceptions.FailedToGenerateResponseError(
                    f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}"
                )
            resp = response.json()
            self.last_response.update(resp)
            self.conversation.update_chat_history(
                prompt, self.get_message(self.last_response)
            )
            return resp

        return for_stream() if stream else for_non_stream()

    def chat(
        self,
        prompt: str,
        stream: bool = False,
        optimizer: str = None,
        conversationally: bool = False,
    ) -> str:
        """Generate response `str`
        Args:
            prompt (str): Prompt to be send.
            stream (bool, optional): Flag for streaming response. Defaults to False.
            optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
            conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
        Returns:
            str: Response generated
        """

        def for_stream():
            for response in self.ask(
                prompt, True, optimizer=optimizer, conversationally=conversationally
            ):
                yield self.get_message(response)

        def for_non_stream():
            return self.get_message(
                self.ask(
                    prompt,
                    False,
                    optimizer=optimizer,
                    conversationally=conversationally,
                )
            )

        return for_stream() if stream else for_non_stream()

    def get_message(self, response: dict) -> str:
        """Retrieves message only from response

        Args:
            response (dict): Response generated by `self.ask`

        Returns:
            str: Message extracted
        """
        assert isinstance(response, dict), "Response should be of dict data-type only"
        try:
            if response["choices"][0].get("delta"):
                return response["choices"][0]["delta"]["content"]
            return response["choices"][0]["message"]["content"]
        except KeyError:
            return ""
class AsyncOPENAI(AsyncProvider):
    def __init__(
        self,
        api_key: str,
        is_conversation: bool = True,
        max_tokens: int = 600,
        temperature: float = 1,
        presence_penalty: int = 0,
        frequency_penalty: int = 0,
        top_p: float = 1,
        model: str = "gpt-3.5-turbo",
        timeout: int = 30,
        intro: str = None,
        filepath: str = None,
        update_file: bool = True,
        proxies: dict = {},
        history_offset: int = 10250,
        act: str = None,
    ):
        """Instantiates OPENAI

        Args:
            api_key (key): OpenAI's API key.
            is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
            max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
            temperature (float, optional): Charge of the generated text's randomness. Defaults to 1.
            presence_penalty (int, optional): Chances of topic being repeated. Defaults to 0.
            frequency_penalty (int, optional): Chances of word being repeated. Defaults to 0.
            top_p (float, optional): Sampling threshold during inference time. Defaults to 0.999.
            model (str, optional): LLM model name. Defaults to "gpt-3.5-turbo".
            timeout (int, optional): Http request timeout. Defaults to 30.
            intro (str, optional): Conversation introductory prompt. Defaults to None.
            filepath (str, optional): Path to file containing conversation history. Defaults to None.
            update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
            proxies (dict, optional): Http request proxies. Defaults to {}.
            history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
            act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
        """
        self.is_conversation = is_conversation
        self.max_tokens_to_sample = max_tokens
        self.api_key = api_key
        self.model = model
        self.temperature = temperature
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty
        self.top_p = top_p
        self.chat_endpoint = "https://api.openai.com/v1/chat/completions"
        self.stream_chunk_size = 64
        self.timeout = timeout
        self.last_response = {}
        self.headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}",
        }

        self.__available_optimizers = (
            method
            for method in dir(Optimizers)
            if callable(getattr(Optimizers, method)) and not method.startswith("__")
        )
        Conversation.intro = (
            AwesomePrompts().get_act(
                act, raise_not_found=True, default=None, case_insensitive=True
            )
            if act
            else intro or Conversation.intro
        )
        self.conversation = Conversation(
            is_conversation, self.max_tokens_to_sample, filepath, update_file
        )
        self.conversation.history_offset = history_offset
        self.session = httpx.AsyncClient(
            headers=self.headers,
            proxies=proxies,
        )

    async def ask(
        self,
        prompt: str,
        stream: bool = False,
        raw: bool = False,
        optimizer: str = None,
        conversationally: bool = False,
    ) -> dict | AsyncGenerator:
        """Chat with AI asynchronously.

        Args:
            prompt (str): Prompt to be send.
            stream (bool, optional): Flag for streaming response. Defaults to False.
            raw (bool, optional): Stream back raw response as received. Defaults to False.
            optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
            conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
        Returns:
           dict|AsyncGenerator : ai content.
        ```json
        {
            "id": "chatcmpl-TaREJpBZsRVQFRFic1wIA7Q7XfnaD",
            "object": "chat.completion",
            "created": 1704623244,
            "model": "gpt-3.5-turbo",
            "usage": {
                "prompt_tokens": 0,
                "completion_tokens": 0,
                "total_tokens": 0
                },
            "choices": [
                {
                    "message": {
                        "role": "assistant",
                        "content": "Hello! How can I assist you today?"
                },
                "finish_reason": "stop",
                "index": 0
                }
            ]
        }
        ```
        """
        conversation_prompt = self.conversation.gen_complete_prompt(prompt)
        if optimizer:
            if optimizer in self.__available_optimizers:
                conversation_prompt = getattr(Optimizers, optimizer)(
                    conversation_prompt if conversationally else prompt
                )
            else:
                raise Exception(
                    f"Optimizer is not one of {self.__available_optimizers}"
                )
        payload = {
            "frequency_penalty": self.frequency_penalty,
            "messages": [{"content": conversation_prompt, "role": "user"}],
            "model": self.model,
            "presence_penalty": self.presence_penalty,
            "stream": stream,
            "temperature": self.temperature,
            "top_p": self.top_p,
        }

        async def for_stream():
            async with self.session.stream(
                "POST", self.chat_endpoint, json=payload, timeout=self.timeout
            ) as response:
                if not response.is_success:
                    raise Exception(
                        f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
                    )

                message_load = ""
                async for value in response.aiter_lines():
                    try:

                        resp = sanitize_stream(value)
                        incomplete_message = await self.get_message(resp)
                        if incomplete_message:
                            message_load += incomplete_message
                            resp["choices"][0]["delta"]["content"] = message_load
                            self.last_response.update(resp)
                            yield value if raw else resp
                        elif raw:
                            yield value
                    except json.decoder.JSONDecodeError:
                        pass
            self.conversation.update_chat_history(
                prompt, await self.get_message(self.last_response)
            )

        async def for_non_stream():
            response = httpx.post(
                self.chat_endpoint,
                json=payload,
                timeout=self.timeout,
                headers=self.headers,
            )
            if (
                not response.is_success
                or not response.headers.get("Content-Type", "") == "application/json"
            ):
                raise Exception(
                    f"Failed to generate response - ({response.status_code}, {response.reason_phrase})"
                )
            resp = response.json()
            self.last_response.update(resp)
            self.conversation.update_chat_history(
                prompt, await self.get_message(self.last_response)
            )
            return resp

        return for_stream() if stream else await for_non_stream()

    async def chat(
        self,
        prompt: str,
        stream: bool = False,
        optimizer: str = None,
        conversationally: bool = False,
    ) -> str | AsyncGenerator:
        """Generate response `str` asynchronously.
        Args:
            prompt (str): Prompt to be send.
            stream (bool, optional): Flag for streaming response. Defaults to False.
            optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
            conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
        Returns:
            str|AsyncGenerator: Response generated
        """

        async def for_stream():
            async_ask = await self.ask(
                prompt, True, optimizer=optimizer, conversationally=conversationally
            )
            async for response in async_ask:
                yield await self.get_message(response)

        async def for_non_stream():
            return await self.get_message(
                await self.ask(
                    prompt,
                    False,
                    optimizer=optimizer,
                    conversationally=conversationally,
                )
            )

        return for_stream() if stream else await for_non_stream()

    async def get_message(self, response: dict) -> str:
        """Retrieves message only from response asynchronously.

        Args:
            response (dict): Response generated by `self.ask`

        Returns:
            str: Message extracted
        """
        assert isinstance(response, dict), "Response should be of dict data-type only"
        try:
            if response["choices"][0].get("delta"):
                return response["choices"][0]["delta"]["content"]
            return response["choices"][0]["message"]["content"]
        except KeyError:
            return ""