Spaces:
Running
Running
import argparse, pickle | |
import logging | |
import os, random | |
import numpy as np | |
import torch | |
import torchaudio | |
from data.tokenizer import ( | |
AudioTokenizer, | |
TextTokenizer, | |
tokenize_audio, | |
tokenize_text | |
) | |
from models import voicecraft | |
import argparse, time, tqdm | |
# this script only works for the musicgen architecture | |
def get_args(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--manifest_fn", type=str, default="path/to/eval_metadata_file") | |
parser.add_argument("--audio_root", type=str, default="path/to/audio_folder") | |
parser.add_argument("--exp_dir", type=str, default="path/to/model_folder") | |
parser.add_argument("--left_margin", type=float, default=0.08, help="extra space on the left to the word boundary") | |
parser.add_argument("--right_margin", type=float, default=0.08, help="extra space on the right to the word boundary") | |
parser.add_argument("--seed", type=int, default=1) | |
parser.add_argument("--codec_audio_sr", type=int, default=16000, help='the sample rate of audio that the codec is trained for') | |
parser.add_argument("--codec_sr", type=int, default=50, help='the sample rate of the codec codes') | |
parser.add_argument("--top_k", type=int, default=-1, help="sampling param") | |
parser.add_argument("--top_p", type=float, default=0.8, help="sampling param") | |
parser.add_argument("--temperature", type=float, default=1.0, help="sampling param") | |
parser.add_argument("--output_dir", type=str, default=None) | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--signature", type=str, default=None, help="path to the encodec model") | |
parser.add_argument("--stop_repetition", type=int, default=2, help="used for inference, when the number of consecutive repetition of a token is bigger than this, stop it") | |
parser.add_argument("--kvcache", type=int, default=1, help='if true, use kv cache, which is 4-8x faster than without') | |
parser.add_argument("--silence_tokens", type=str, default="[1388,1898,131]", help="note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default") | |
return parser.parse_args() | |
def inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, device, decode_config): | |
# phonemize | |
text_tokens = [phn2num[phn] for phn in | |
tokenize_text( | |
text_tokenizer, text=target_text.strip() | |
) if phn in phn2num | |
] | |
text_tokens = torch.LongTensor(text_tokens).unsqueeze(0) | |
text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]]) | |
encoded_frames = tokenize_audio(audio_tokenizer, audio_fn) | |
original_audio = encoded_frames[0][0].transpose(2,1) # [1,T,K] | |
assert original_audio.ndim==3 and original_audio.shape[0] == 1 and original_audio.shape[2] == model_args.n_codebooks, original_audio.shape | |
logging.info(f"with direct encodec encoding before input, original audio length: {original_audio.shape[1]} codec frames, which is {original_audio.shape[1]/decode_config['codec_sr']:.2f} sec.") | |
# forward | |
stime = time.time() | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
original_audio[...,:model_args.n_codebooks].to(device), # [1,T,8] | |
mask_interval=mask_interval.unsqueeze(0).to(device), | |
top_k=decode_config['top_k'], | |
top_p=decode_config['top_p'], | |
temperature=decode_config['temperature'], | |
stop_repetition=decode_config['stop_repetition'], | |
kvcache=decode_config['kvcache'], | |
silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens']) == str else decode_config['silence_tokens'], | |
) # output is [1,K,T] | |
logging.info(f"inference on one sample take: {time.time() - stime:.4f} sec.") | |
if type(encoded_frames) == tuple: | |
encoded_frames = encoded_frames[0] | |
logging.info(f"generated encoded_frames.shape: {encoded_frames.shape}, which is {encoded_frames.shape[-1]/decode_config['codec_sr']} sec.") | |
# decode (both original and generated) | |
original_sample = audio_tokenizer.decode( | |
[(original_audio.transpose(2,1), None)] # [1,T,8] -> [1,8,T] | |
) | |
generated_sample = audio_tokenizer.decode( | |
[(encoded_frames, None)] | |
) | |
return original_sample, generated_sample | |
def get_model(exp_dir, device=None): | |
with open(os.path.join(exp_dir, "args.pkl"), "rb") as f: | |
model_args = pickle.load(f) | |
logging.info("load model weights...") | |
model = voicecraft.VoiceCraft(model_args) | |
ckpt_fn = os.path.join(exp_dir, "best_bundle.pth") | |
ckpt = torch.load(ckpt_fn, map_location='cpu')['model'] | |
phn2num = torch.load(ckpt_fn, map_location='cpu')['phn2num'] | |
model.load_state_dict(ckpt) | |
del ckpt | |
logging.info("done loading weights...") | |
if device == None: | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
model.to(device) | |
model.eval() | |
return model, model_args, phn2num | |
def get_mask_interval(ali_fn, word_span_ind, editType): | |
with open(ali_fn, "r") as rf: | |
data = [l.strip().split(",") for l in rf.readlines()] | |
data = data[1:] | |
tmp = word_span_ind.split(",") | |
s, e = int(tmp[0]), int(tmp[-1]) | |
start = None | |
for j, item in enumerate(data): | |
if j == s and item[3] == "words": | |
if editType == 'insertion': | |
start = float(item[1]) | |
else: | |
start = float(item[0]) | |
if j == e and item[3] == "words": | |
if editType == 'insertion': | |
end = float(item[0]) | |
else: | |
end = float(item[1]) | |
assert start != None | |
break | |
return (start, end) | |
if __name__ == "__main__": | |
def seed_everything(seed): | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
formatter = ( | |
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
args = get_args() | |
# args.device = 'cpu' | |
args.allowed_repeat_tokens = eval(args.allowed_repeat_tokens) | |
seed_everything(args.seed) | |
# load model | |
stime = time.time() | |
logging.info(f"loading model from {args.exp_dir}") | |
model, model_args, phn2num = get_model(args.exp_dir) | |
if not os.path.isfile(model_args.exp_dir): | |
model_args.exp_dir = args.exp_dir | |
logging.info(f"loading model done, took {time.time() - stime:.4f} sec") | |
# setup text and audio tokenizer | |
text_tokenizer = TextTokenizer(backend="espeak") | |
audio_tokenizer = AudioTokenizer(signature=args.signature) # will also put the neural codec model on gpu | |
with open(args.manifest_fn, "r") as rf: | |
manifest = [l.strip().split("\t") for l in rf.readlines()] | |
manifest = manifest[1:] | |
# wav_fn txt_fn alingment_fn num_words word_span_ind | |
audio_fns = [] | |
target_texts = [] | |
mask_intervals = [] | |
edit_types = [] | |
new_spans = [] | |
orig_spans = [] | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.crop_concat: | |
mfa_temp = f"{args.output_dir}/mfa_temp" | |
os.makedirs(mfa_temp, exist_ok=True) | |
for item in manifest: | |
audio_fn = os.path.join(args.audio_root, item[0]) | |
temp = torchaudio.info(audio_fn) | |
audio_dur = temp.num_frames/temp.sample_rate | |
audio_fns.append(audio_fn) | |
target_text = item[2].split("|")[-1] | |
edit_types.append(item[5].split("|")) | |
new_spans.append(item[4].split("|")) | |
orig_spans.append(item[3].split("|")) | |
target_texts.append(target_text) # the last transcript is the target | |
# mi needs to be created from word_ind_span and alignment_fn, along with args.left_margin and args.right_margin | |
mis = [] | |
all_ind_intervals = item[3].split("|") | |
editTypes = item[5].split("|") | |
smaller_indx = [] | |
alignment_fn = os.path.join(args.audio_root, "aligned", item[0].replace(".wav", ".csv")) | |
if not os.path.isfile(alignment_fn): | |
alignment_fn = alignment_fn.replace("/aligned/", "/aligned_csv/") | |
assert os.path.isfile(alignment_fn), alignment_fn | |
for ind_inter,editType in zip(all_ind_intervals, editTypes): | |
# print(ind_inter) | |
mi = get_mask_interval(alignment_fn, ind_inter, editType) | |
mi = (max(mi[0] - args.left_margin, 1/args.codec_sr), min(mi[1] + args.right_margin, audio_dur)) # in seconds | |
mis.append(mi) | |
smaller_indx.append(mi[0]) | |
ind = np.argsort(smaller_indx) | |
mis = [mis[id] for id in ind] | |
mask_intervals.append(mis) | |
for i, (audio_fn, target_text, mask_interval) in enumerate(tqdm.tqdm(zip(audio_fns, target_texts, mask_intervals))): | |
orig_mask_interval = mask_interval | |
mask_interval = [[round(cmi[0]*args.codec_sr), round(cmi[1]*args.codec_sr)] for cmi in mask_interval] | |
# logging.info(f"i: {i}, mask_interval: {mask_interval}") | |
mask_interval = torch.LongTensor(mask_interval) # [M,2] | |
orig_audio, new_audio = inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, args.device, vars(args)) | |
# save segments for comparison | |
orig_audio, new_audio = orig_audio[0].cpu(), new_audio[0].cpu() | |
# logging.info(f"length of the resynthesize orig audio: {orig_audio.shape}") | |
save_fn_new = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_new_seed{args.seed}.wav" | |
torchaudio.save(save_fn_new, new_audio, args.codec_audio_sr) | |
save_fn_orig = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_orig.wav" | |
if not os.path.isfile(save_fn_orig): | |
orig_audio, orig_sr = torchaudio.load(audio_fn) | |
if orig_sr != args.codec_audio_sr: | |
orig_audio = torchaudio.transforms.Resample(orig_sr, args.codec_audio_sr)(orig_audio) | |
torchaudio.save(save_fn_orig, orig_audio, args.codec_audio_sr) | |