import gradio as gr from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer from transformers.image_utils import load_image from threading import Thread import re import time import torch import spaces #import subprocess #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct") model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct", torch_dtype=torch.bfloat16, #_attn_implementation="flash_attention_2" ).to("cuda") @spaces.GPU def model_inference( input_dict, history ): text = input_dict["text"] print(input_dict["files"]) if len(input_dict["files"]) > 1: images = [load_image(image) for image in input_dict["files"]] elif len(input_dict["files"]) == 1: images = [load_image(input_dict["files"][0])] else: images = [] if text == "" and not images: gr.Error("Please input a query and optionally image(s).") if text == "" and images: gr.Error("Please input a text query along the image(s).") resulting_messages = [ { "role": "user", "content": [{"type": "image"} for _ in range(len(images))] + [ {"type": "text", "text": text} ] } ] prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[images], return_tensors="pt") inputs = inputs.to('cuda') generation_args = { "input_ids": inputs.input_ids, "pixel_values": inputs.pixel_values, "attention_mask": inputs.attention_mask, "num_return_sequences": 1, "no_repeat_ngram_size": 2, "max_new_tokens": 500, "min_new_tokens": 10, } # Generate streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_args = dict(inputs, streamer=streamer, max_new_tokens=500) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_args) thread.start() yield "..." buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer#[len(ext_buffer):] time.sleep(0.01) yield buffer examples=[ [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], [{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}], [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], [{"text": "What does this say?", "files": ["example_images/math.jpg"]}], [{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}], [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], ] demo = gr.ChatInterface(fn=model_inference, title="SmolVLM-500M: The 2nd Smollest VLM ever 💫", description="Play with [HuggingFaceTB/SmolVLM-500M-Instruct](https://huggingface.co./HuggingFaceTB/SmolVLM-500M-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.", examples=examples, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, cache_examples=False ) demo.launch(debug=True)