from tqdm import tqdm import decord import numpy as np from .util import draw_pose from .dwpose_detector import dwpose_detector as dwprocessor def get_video_pose( video_path: str, ref_image: np.ndarray, sample_stride: int=1): """preprocess ref image pose and video pose Args: video_path (str): video pose path ref_image (np.ndarray): reference image sample_stride (int, optional): Defaults to 1. Returns: np.ndarray: sequence of video pose """ # select ref-keypoint from reference pose for pose rescale ref_pose = dwprocessor(ref_image) ref_keypoint_id = [0, 1, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] ref_keypoint_id = [i for i in ref_keypoint_id \ if len(ref_pose['bodies']['subset']) > 0 and ref_pose['bodies']['subset'][0][i] >= .0] ref_body = ref_pose['bodies']['candidate'][ref_keypoint_id] height, width, _ = ref_image.shape # read input video vr = decord.VideoReader(video_path, ctx=decord.cpu(0)) sample_stride *= max(1, int(vr.get_avg_fps() / 24)) frames = vr.get_batch(list(range(0, len(vr), sample_stride))).asnumpy() detected_poses = [dwprocessor(frm) for frm in tqdm(frames, desc="DWPose")] dwprocessor.release_memory() detected_bodies = np.stack( [p['bodies']['candidate'] for p in detected_poses if p['bodies']['candidate'].shape[0] == 18])[:, ref_keypoint_id] # compute linear-rescale params ay, by = np.polyfit(detected_bodies[:, :, 1].flatten(), np.tile(ref_body[:, 1], len(detected_bodies)), 1) fh, fw, _ = vr[0].shape ax = ay / (fh / fw / height * width) bx = np.mean(np.tile(ref_body[:, 0], len(detected_bodies)) - detected_bodies[:, :, 0].flatten() * ax) a = np.array([ax, ay]) b = np.array([bx, by]) output_pose = [] # pose rescale for detected_pose in detected_poses: detected_pose['bodies']['candidate'] = detected_pose['bodies']['candidate'] * a + b detected_pose['faces'] = detected_pose['faces'] * a + b detected_pose['hands'] = detected_pose['hands'] * a + b im = draw_pose(detected_pose, height, width) output_pose.append(np.array(im)) return np.stack(output_pose) def get_image_pose(ref_image): """process image pose Args: ref_image (np.ndarray): reference image pixel value Returns: np.ndarray: pose visual image in RGB-mode """ height, width, _ = ref_image.shape ref_pose = dwprocessor(ref_image) pose_img = draw_pose(ref_pose, height, width) return np.array(pose_img)