Spaces:
Paused
Paused
from dataclasses import dataclass | |
from typing import Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.models.unets.unet_3d_blocks import get_down_block, get_up_block, UNetMidBlockSpatioTemporal | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNetSpatioTemporalConditionOutput(BaseOutput): | |
""" | |
The output of [`UNetSpatioTemporalConditionModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor = None | |
class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
r""" | |
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, | |
and a timestep and returns a sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): | |
The tuple of downsample blocks to use. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): | |
The tuple of upsample blocks to use. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
addition_time_embed_dim: (`int`, defaults to 256): | |
Dimension to to encode the additional time ids. | |
projection_class_embeddings_input_dim (`int`, defaults to 768): | |
The dimension of the projection of encoded `added_time_ids`. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
The dimension of the cross attention features. | |
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): | |
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], | |
[`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], | |
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. | |
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): | |
The number of attention heads. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 8, | |
out_channels: int = 4, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"DownBlockSpatioTemporal", | |
), | |
up_block_types: Tuple[str] = ( | |
"UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
), | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
addition_time_embed_dim: int = 256, | |
projection_class_embeddings_input_dim: int = 768, | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
cross_attention_dim: Union[int, Tuple[int]] = 1024, | |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20), | |
num_frames: int = 25, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. " \ | |
f"`down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. " \ | |
f"`block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. " \ | |
f"`num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. " \ | |
f"`cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. " \ | |
f"`layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=3, | |
padding=1, | |
) | |
# time | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) | |
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
blocks_time_embed_dim = time_embed_dim | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-5, | |
cross_attention_dim=cross_attention_dim[i], | |
num_attention_heads=num_attention_heads[i], | |
resnet_act_fn="silu", | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlockSpatioTemporal( | |
block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
) | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
reversed_layers_per_block = list(reversed(layers_per_block)) | |
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=reversed_layers_per_block[i] + 1, | |
transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=1e-5, | |
resolution_idx=i, | |
cross_attention_dim=reversed_cross_attention_dim[i], | |
num_attention_heads=reversed_num_attention_heads[i], | |
resnet_act_fn="silu", | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], | |
out_channels, | |
kernel_size=3, | |
padding=1, | |
) | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` " \ | |
f"when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co./blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
added_time_ids: torch.Tensor, | |
pose_latents: torch.Tensor = None, | |
image_only_indicator: bool = False, | |
return_dict: bool = True, | |
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: | |
r""" | |
The [`UNetSpatioTemporalConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. | |
added_time_ids: (`torch.FloatTensor`): | |
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal | |
embeddings and added to the time embeddings. | |
pose_latents: (`torch.FloatTensor`): | |
The additional latents for pose sequences. | |
image_only_indicator (`bool`, *optional*, defaults to `False`): | |
Whether or not training with all images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] | |
instead of a plain tuple. | |
Returns: | |
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: | |
If `return_dict` is True, | |
an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is the sample tensor. | |
""" | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
batch_size, num_frames = sample.shape[:2] | |
timesteps = timesteps.expand(batch_size) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb) | |
time_embeds = self.add_time_proj(added_time_ids.flatten()) | |
time_embeds = time_embeds.reshape((batch_size, -1)) | |
time_embeds = time_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(time_embeds) | |
emb = emb + aug_emb | |
# Flatten the batch and frames dimensions | |
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] | |
sample = sample.flatten(0, 1) | |
# Repeat the embeddings num_video_frames times | |
# emb: [batch, channels] -> [batch * frames, channels] | |
emb = emb.repeat_interleave(num_frames, dim=0) | |
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
if pose_latents is not None: | |
sample = sample + pose_latents | |
image_only_indicator = torch.ones(batch_size, num_frames, dtype=sample.dtype, device=sample.device) \ | |
if image_only_indicator else torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
image_only_indicator=image_only_indicator, | |
) | |
down_block_res_samples += res_samples | |
# 4. mid | |
sample = self.mid_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
res_samples = down_block_res_samples[-len(upsample_block.resnets):] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
image_only_indicator=image_only_indicator, | |
) | |
# 6. post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
# 7. Reshape back to original shape | |
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) | |
if not return_dict: | |
return (sample,) | |
return UNetSpatioTemporalConditionOutput(sample=sample) | |