fffiloni's picture
Upload 25 files
e394497 verified
raw
history blame
23.1 kB
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.unets.unet_3d_blocks import get_down_block, get_up_block, UNetMidBlockSpatioTemporal
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNetSpatioTemporalConditionOutput(BaseOutput):
"""
The output of [`UNetSpatioTemporalConditionModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.FloatTensor = None
class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
r"""
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state,
and a timestep and returns a sample shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
Height and width of input/output sample.
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
The tuple of downsample blocks to use.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
The tuple of upsample blocks to use.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
addition_time_embed_dim: (`int`, defaults to 256):
Dimension to to encode the additional time ids.
projection_class_embeddings_input_dim (`int`, defaults to 768):
The dimension of the projection of encoded `added_time_ids`.
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
[`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
The number of attention heads.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 8,
out_channels: int = 4,
down_block_types: Tuple[str] = (
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"DownBlockSpatioTemporal",
),
up_block_types: Tuple[str] = (
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
),
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
addition_time_embed_dim: int = 256,
projection_class_embeddings_input_dim: int = 768,
layers_per_block: Union[int, Tuple[int]] = 2,
cross_attention_dim: Union[int, Tuple[int]] = 1024,
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20),
num_frames: int = 25,
):
super().__init__()
self.sample_size = sample_size
# Check inputs
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. " \
f"`down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. " \
f"`block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. " \
f"`num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. " \
f"`cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
)
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `layers_per_block` as `down_block_types`. " \
f"`layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
)
# input
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
padding=1,
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
if isinstance(cross_attention_dim, int):
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
if isinstance(layers_per_block, int):
layers_per_block = [layers_per_block] * len(down_block_types)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
blocks_time_embed_dim = time_embed_dim
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block[i],
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=blocks_time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=1e-5,
cross_attention_dim=cross_attention_dim[i],
num_attention_heads=num_attention_heads[i],
resnet_act_fn="silu",
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlockSpatioTemporal(
block_out_channels[-1],
temb_channels=blocks_time_embed_dim,
transformer_layers_per_block=transformer_layers_per_block[-1],
cross_attention_dim=cross_attention_dim[-1],
num_attention_heads=num_attention_heads[-1],
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
reversed_layers_per_block = list(reversed(layers_per_block))
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=reversed_layers_per_block[i] + 1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=blocks_time_embed_dim,
add_upsample=add_upsample,
resnet_eps=1e-5,
resolution_idx=i,
cross_attention_dim=reversed_cross_attention_dim[i],
num_attention_heads=reversed_num_attention_heads[i],
resnet_act_fn="silu",
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(
block_out_channels[0],
out_channels,
kernel_size=3,
padding=1,
)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` " \
f"when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co./blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
added_time_ids: torch.Tensor,
pose_latents: torch.Tensor = None,
image_only_indicator: bool = False,
return_dict: bool = True,
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
r"""
The [`UNetSpatioTemporalConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
added_time_ids: (`torch.FloatTensor`):
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
embeddings and added to the time embeddings.
pose_latents: (`torch.FloatTensor`):
The additional latents for pose sequences.
image_only_indicator (`bool`, *optional*, defaults to `False`):
Whether or not training with all images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`]
instead of a plain tuple.
Returns:
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
If `return_dict` is True,
an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned,
otherwise a `tuple` is returned where the first element is the sample tensor.
"""
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
batch_size, num_frames = sample.shape[:2]
timesteps = timesteps.expand(batch_size)
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb)
time_embeds = self.add_time_proj(added_time_ids.flatten())
time_embeds = time_embeds.reshape((batch_size, -1))
time_embeds = time_embeds.to(emb.dtype)
aug_emb = self.add_embedding(time_embeds)
emb = emb + aug_emb
# Flatten the batch and frames dimensions
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
sample = sample.flatten(0, 1)
# Repeat the embeddings num_video_frames times
# emb: [batch, channels] -> [batch * frames, channels]
emb = emb.repeat_interleave(num_frames, dim=0)
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
# 2. pre-process
sample = self.conv_in(sample)
if pose_latents is not None:
sample = sample + pose_latents
image_only_indicator = torch.ones(batch_size, num_frames, dtype=sample.dtype, device=sample.device) \
if image_only_indicator else torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
image_only_indicator=image_only_indicator,
)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
image_only_indicator=image_only_indicator,
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
# 7. Reshape back to original shape
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
if not return_dict:
return (sample,)
return UNetSpatioTemporalConditionOutput(sample=sample)