File size: 2,352 Bytes
e394497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import logging

import torch
import torch.utils.checkpoint
from diffusers.models import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

from ..modules.unet import UNetSpatioTemporalConditionModel
from ..modules.pose_net import PoseNet
from ..pipelines.pipeline_mimicmotion import MimicMotionPipeline

logger = logging.getLogger(__name__)

class MimicMotionModel(torch.nn.Module):
    def __init__(self, base_model_path):
        """construnct base model components and load pretrained svd model except pose-net
        Args:
            base_model_path (str): pretrained svd model path
        """
        super().__init__()
        self.unet = UNetSpatioTemporalConditionModel.from_config(
            UNetSpatioTemporalConditionModel.load_config(base_model_path, subfolder="unet"))
        self.vae = AutoencoderKLTemporalDecoder.from_pretrained(
            base_model_path, subfolder="vae", torch_dtype=torch.float16, variant="fp16")
        self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            base_model_path, subfolder="image_encoder", torch_dtype=torch.float16, variant="fp16")
        self.noise_scheduler = EulerDiscreteScheduler.from_pretrained(
            base_model_path, subfolder="scheduler")
        self.feature_extractor = CLIPImageProcessor.from_pretrained(
            base_model_path, subfolder="feature_extractor")
        # pose_net
        self.pose_net = PoseNet(noise_latent_channels=self.unet.config.block_out_channels[0])

def create_pipeline(infer_config, device):
    """create mimicmotion pipeline and load pretrained weight

    Args:
        infer_config (str): 
        device (str or torch.device): "cpu" or "cuda:{device_id}"
    """
    mimicmotion_models = MimicMotionModel(infer_config.base_model_path)
    mimicmotion_models.load_state_dict(torch.load(infer_config.ckpt_path, map_location="cpu"), strict=False)
    pipeline = MimicMotionPipeline(
        vae=mimicmotion_models.vae, 
        image_encoder=mimicmotion_models.image_encoder, 
        unet=mimicmotion_models.unet, 
        scheduler=mimicmotion_models.noise_scheduler,
        feature_extractor=mimicmotion_models.feature_extractor, 
        pose_net=mimicmotion_models.pose_net
    )
    return pipeline