Spaces:
Paused
Paused
File size: 2,352 Bytes
e394497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import logging
import torch
import torch.utils.checkpoint
from diffusers.models import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from ..modules.unet import UNetSpatioTemporalConditionModel
from ..modules.pose_net import PoseNet
from ..pipelines.pipeline_mimicmotion import MimicMotionPipeline
logger = logging.getLogger(__name__)
class MimicMotionModel(torch.nn.Module):
def __init__(self, base_model_path):
"""construnct base model components and load pretrained svd model except pose-net
Args:
base_model_path (str): pretrained svd model path
"""
super().__init__()
self.unet = UNetSpatioTemporalConditionModel.from_config(
UNetSpatioTemporalConditionModel.load_config(base_model_path, subfolder="unet"))
self.vae = AutoencoderKLTemporalDecoder.from_pretrained(
base_model_path, subfolder="vae", torch_dtype=torch.float16, variant="fp16")
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_model_path, subfolder="image_encoder", torch_dtype=torch.float16, variant="fp16")
self.noise_scheduler = EulerDiscreteScheduler.from_pretrained(
base_model_path, subfolder="scheduler")
self.feature_extractor = CLIPImageProcessor.from_pretrained(
base_model_path, subfolder="feature_extractor")
# pose_net
self.pose_net = PoseNet(noise_latent_channels=self.unet.config.block_out_channels[0])
def create_pipeline(infer_config, device):
"""create mimicmotion pipeline and load pretrained weight
Args:
infer_config (str):
device (str or torch.device): "cpu" or "cuda:{device_id}"
"""
mimicmotion_models = MimicMotionModel(infer_config.base_model_path)
mimicmotion_models.load_state_dict(torch.load(infer_config.ckpt_path, map_location="cpu"), strict=False)
pipeline = MimicMotionPipeline(
vae=mimicmotion_models.vae,
image_encoder=mimicmotion_models.image_encoder,
unet=mimicmotion_models.unet,
scheduler=mimicmotion_models.noise_scheduler,
feature_extractor=mimicmotion_models.feature_extractor,
pose_net=mimicmotion_models.pose_net
)
return pipeline
|