MMAudio / app.py
Rex Cheng
test
b0ec3f5
raw
history blame
8.09 kB
import spaces
import logging
from datetime import datetime
from pathlib import Path
import gradio as gr
import torch
import torchaudio
import os
try:
import mmaudio
except ImportError:
os.system("pip install -e .")
import mmaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
import tempfile
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16
model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')
setup_eval_logging()
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
seq_cfg = model.seq_cfg
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
log.info(f'Loaded weights from {model.model_path}')
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
synchformer_ckpt=model.synchformer_ckpt,
enable_conditions=True,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
return net, feature_utils, seq_cfg
net, feature_utils, seq_cfg = get_model()
@spaces.GPU
@torch.inference_mode()
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
cfg_strength: float, duration: float):
rng = torch.Generator(device=device)
rng.manual_seed(seed)
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
video_info = load_video(video, duration)
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration = video_info.duration_sec
clip_frames = clip_frames.unsqueeze(0)
sync_frames = sync_frames.unsqueeze(0)
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
audios = generate(clip_frames,
sync_frames, [prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=cfg_strength)
audio = audios.float().cpu()[0]
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
# output_dir.mkdir(exist_ok=True, parents=True)
# video_save_path = output_dir / f'{current_time_string}.mp4'
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
log.info(f'Saved video to {video_save_path}')
return video_save_path
@spaces.GPU
@torch.inference_mode()
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
duration: float):
rng = torch.Generator(device=device)
rng.manual_seed(seed)
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
clip_frames = sync_frames = None
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
audios = generate(clip_frames,
sync_frames, [prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=cfg_strength)
audio = audios.float().cpu()[0]
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
log.info(f'Saved audio to {audio_save_path}')
return audio_save_path
video_to_audio_tab = gr.Interface(
fn=video_to_audio,
inputs=[
gr.Video(),
gr.Text(label='Prompt'),
gr.Text(label='Negative prompt', value='music'),
gr.Number(label='Seed', value=0, precision=0, minimum=0),
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
gr.Number(label='Duration (sec)', value=8, minimum=1),
],
outputs='playable_video',
cache_examples=False,
title='MMAudio — Video-to-Audio Synthesis',
examples=[
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/sora_beach.mp4',
'waves, seagulls',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/sora_serpent.mp4',
'',
'music',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/sora_seahorse.mp4',
'bubbles',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/sora_india.mp4',
'Indian holy music',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/sora_galloping.mp4',
'galloping',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/sora_kraken.mp4',
'waves, storm',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/sora_nyc.mp4',
'',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/mochi_storm.mp4',
'storm',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/hunyuan_spring.mp4',
'',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/hunyuan_typing.mp4',
'typing',
'',
0,
25,
4.5,
10,
],
[
'https://huggingface.co./hkchengrex/MMAudio/resolve/main/examples/hunyuan_wake_up.mp4',
'',
'',
0,
25,
4.5,
10,
],
])
text_to_audio_tab = gr.Interface(
fn=text_to_audio,
inputs=[
gr.Text(label='Prompt'),
gr.Text(label='Negative prompt'),
gr.Number(label='Seed', value=0, precision=0, minimum=0),
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
gr.Number(label='Duration (sec)', value=8, minimum=1),
],
outputs='audio',
cache_examples=False,
title='MMAudio — Text-to-Audio Synthesis',
)
if __name__ == "__main__":
gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab],
['Video-to-Audio', 'Text-to-Audio']).launch(allowed_paths=[output_dir])