File size: 7,188 Bytes
948429b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from typing import Optional, Union, Tuple, Dict
from PIL import Image

def save_images(images,dest, num_rows=1, offset_ratio=0.02):
    if type(images) is list:
        num_empty = len(images) % num_rows
    elif images.ndim == 4:
        num_empty = images.shape[0] % num_rows
    else:
        images = [images]
        num_empty = 0

    pil_img = Image.fromarray(images[-1])
    pil_img.save(dest)
    # display(pil_img)


def save_image(images,dest, num_rows=1, offset_ratio=0.02):
    print(images.shape)
    pil_img = Image.fromarray(images[0])
    pil_img.save(dest)

def register_attention_control(model, controller):
    class AttnProcessor():
        def __init__(self,place_in_unet):
            self.place_in_unet = place_in_unet

        def __call__(self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None,
            scale=1.0,):
            # The `Attention` class can call different attention processors / attention functions
    
            residual = hidden_states

            if attn.spatial_norm is not None:
                hidden_states = attn.spatial_norm(hidden_states, temb)

            input_ndim = hidden_states.ndim

            if input_ndim == 4:
                batch_size, channel, height, width = hidden_states.shape
                hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

            h = attn.heads
            is_cross = encoder_hidden_states is not None
            if encoder_hidden_states is None:
                encoder_hidden_states = hidden_states
            elif attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

            batch_size, sequence_length, _ = (
                hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
            )
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

            q = attn.to_q(hidden_states)
            k = attn.to_k(encoder_hidden_states)
            v = attn.to_v(encoder_hidden_states)
            q = attn.head_to_batch_dim(q)
            k = attn.head_to_batch_dim(k)
            v = attn.head_to_batch_dim(v)

            if not is_cross:
                q,k,v = controller.self_attn_forward(q, k, v, attn.heads)

            attention_probs = attn.get_attention_scores(q, k, attention_mask)
            if is_cross:
                attention_probs  = controller(attention_probs , is_cross, self.place_in_unet)
            # else:
            #     out = controller.self_attn_forward(q, k, v, sim, attention_probs , is_cross, self.place_in_unet, attn.heads, scale=attn.scale)
            hidden_states = torch.bmm(attention_probs, v)
            hidden_states = attn.batch_to_head_dim(hidden_states)

            # linear proj   
            hidden_states = attn.to_out[0](hidden_states, scale=scale)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            if input_ndim == 4:
                hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

            if attn.residual_connection:
                hidden_states = hidden_states + residual

            hidden_states = hidden_states / attn.rescale_output_factor

            return hidden_states


    def register_recr(net_, count, place_in_unet):
        for idx, m in enumerate(net_.modules()):
            # print(m.__class__.__name__)
            if m.__class__.__name__ == "Attention":
                count+=1
                m.processor = AttnProcessor( place_in_unet)
        return count

    cross_att_count = 0
    sub_nets = model.unet.named_children()
    for net in sub_nets:
        if "down" in net[0]:
            cross_att_count += register_recr(net[1], 0, "down")
        elif "up" in net[0]:
            cross_att_count += register_recr(net[1], 0, "up")
        elif "mid" in net[0]:
            cross_att_count += register_recr(net[1], 0, "mid")
    controller.num_att_layers = cross_att_count

    
def get_word_inds(text: str, word_place: int, tokenizer):
    split_text = text.split(" ")
    if type(word_place) is str:
        word_place = [i for i, word in enumerate(split_text) if word_place == word]
    elif type(word_place) is int:
        word_place = [word_place]
    out = []
    if len(word_place) > 0:
        words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
        cur_len, ptr = 0, 0

        for i in range(len(words_encode)):
            cur_len += len(words_encode[i])
            if ptr in word_place:
                out.append(i + 1)
            if cur_len >= len(split_text[ptr]):
                ptr += 1
                cur_len = 0
    return np.array(out)


def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None):
    if type(bounds) is float:
        bounds = 0, bounds
    start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
    if word_inds is None:
        word_inds = torch.arange(alpha.shape[2])
    alpha[: start, prompt_ind, word_inds] = 0
    alpha[start: end, prompt_ind, word_inds] = 1
    alpha[end:, prompt_ind, word_inds] = 0
    return alpha


def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
                                   tokenizer, max_num_words=77):
    if type(cross_replace_steps) is not dict:
        cross_replace_steps = {"default_": cross_replace_steps}
    if "default_" not in cross_replace_steps:
        cross_replace_steps["default_"] = (0., 1.)
    alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
    for i in range(len(prompts) - 1):
        alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
                                                  i)
    for key, item in cross_replace_steps.items():
        if key != "default_":
             inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
             for i, ind in enumerate(inds):
                 if len(ind) > 0:
                    alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
    alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words
    return alpha_time_words