Spaces:
Paused
Paused
from .refine import * | |
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1): | |
return nn.Sequential( | |
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1), | |
nn.PReLU(out_planes), | |
) | |
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | |
return nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=True, | |
), | |
nn.PReLU(out_planes), | |
) | |
class IFBlock(nn.Module): | |
def __init__(self, in_planes, c=64): | |
super(IFBlock, self).__init__() | |
self.conv0 = nn.Sequential( | |
conv(in_planes, c // 2, 3, 2, 1), | |
conv(c // 2, c, 3, 2, 1), | |
) | |
self.convblock = nn.Sequential( | |
conv(c, c), | |
conv(c, c), | |
conv(c, c), | |
conv(c, c), | |
conv(c, c), | |
conv(c, c), | |
conv(c, c), | |
conv(c, c), | |
) | |
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1) | |
def forward(self, x, flow, scale): | |
if scale != 1: | |
x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) | |
if flow != None: | |
flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale | |
x = torch.cat((x, flow), 1) | |
x = self.conv0(x) | |
x = self.convblock(x) + x | |
tmp = self.lastconv(x) | |
tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False) | |
flow = tmp[:, :4] * scale * 2 | |
mask = tmp[:, 4:5] | |
return flow, mask | |
class IFNet(nn.Module): | |
def __init__(self): | |
super(IFNet, self).__init__() | |
self.block0 = IFBlock(6, c=240) | |
self.block1 = IFBlock(13 + 4, c=150) | |
self.block2 = IFBlock(13 + 4, c=90) | |
self.block_tea = IFBlock(16 + 4, c=90) | |
self.contextnet = Contextnet() | |
self.unet = Unet() | |
def forward(self, x, scale=[4, 2, 1], timestep=0.5): | |
img0 = x[:, :3] | |
img1 = x[:, 3:6] | |
gt = x[:, 6:] # In inference time, gt is None | |
flow_list = [] | |
merged = [] | |
mask_list = [] | |
warped_img0 = img0 | |
warped_img1 = img1 | |
flow = None | |
loss_distill = 0 | |
stu = [self.block0, self.block1, self.block2] | |
for i in range(3): | |
if flow != None: | |
flow_d, mask_d = stu[i]( | |
torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i] | |
) | |
flow = flow + flow_d | |
mask = mask + mask_d | |
else: | |
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i]) | |
mask_list.append(torch.sigmoid(mask)) | |
flow_list.append(flow) | |
warped_img0 = warp(img0, flow[:, :2]) | |
warped_img1 = warp(img1, flow[:, 2:4]) | |
merged_student = (warped_img0, warped_img1) | |
merged.append(merged_student) | |
if gt.shape[1] == 3: | |
flow_d, mask_d = self.block_tea( | |
torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1 | |
) | |
flow_teacher = flow + flow_d | |
warped_img0_teacher = warp(img0, flow_teacher[:, :2]) | |
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4]) | |
mask_teacher = torch.sigmoid(mask + mask_d) | |
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher) | |
else: | |
flow_teacher = None | |
merged_teacher = None | |
for i in range(3): | |
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i]) | |
if gt.shape[1] == 3: | |
loss_mask = ( | |
((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01) | |
.float() | |
.detach() | |
) | |
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean() | |
c0 = self.contextnet(img0, flow[:, :2]) | |
c1 = self.contextnet(img1, flow[:, 2:4]) | |
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) | |
res = tmp[:, :3] * 2 - 1 | |
merged[2] = torch.clamp(merged[2] + res, 0, 1) | |
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill | |