Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer | |
import json | |
import os | |
from huggingface_hub import login | |
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HF_TOKEN") | |
demo_conversation = """[ | |
{"role": "system", "content": "You are a helpful chatbot."}, | |
{"role": "user", "content": "Hi there!"}, | |
{"role": "assistant", "content": "Hello, human!"}, | |
{"role": "user", "content": "Can I ask a question?"} | |
]""" | |
description_text = """# Chat Template Viewer | |
### This space is a helper to learn more about [Chat Templates](https://huggingface.co./docs/transformers/main/en/chat_templating). | |
""" | |
default_tools = [{"type": "function", "function": {"name":"get_current_weather", "description": "Get▁the▁current▁weather", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "format": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location."}},"required":["location","format"]}}}] | |
# render the tool use prompt as a string: | |
def get_template_names(model_name): | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if isinstance(tokenizer.chat_template, dict): | |
return list(tokenizer.chat_template.keys()) | |
else: | |
return [] | |
except Exception as e: | |
return "None" | |
def update_template_dropdown(model_name): | |
template_names = get_template_names(model_name) | |
if template_names: | |
return gr.update(choices=template_names, value=None) | |
def apply_chat_template(model_name, test_conversation, add_generation_prompt, cleanup_whitespace, template_name, hf_token, kwargs): | |
try: | |
login(token=hf_token) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
except: | |
return f"model {model_name} could not be loaded or invalid HF token" | |
try: | |
outputs = [] | |
conversation = json.loads(test_conversation) | |
template = tokenizer.chat_template.get(template_name) if template_name else None | |
print(kwargs) | |
formatted = tokenizer.apply_chat_template(conversation, chat_template=template, tokenize=False, add_generation_prompt=add_generation_prompt, tools=default_tools) | |
return formatted | |
except Exception as e: | |
return str(e) | |
with gr.Blocks() as demo: | |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name") | |
template_dropdown = gr.Dropdown(label="Template Name", choices=[], interactive=True) | |
conversation_input = gr.TextArea(value=demo_conversation, lines=6, label="Conversation") | |
add_generation_prompt_checkbox = gr.Checkbox(value=False, label="Add generation prompt") | |
cleanup_whitespace_checkbox = gr.Checkbox(value=True, label="Cleanup template whitespace") | |
hf_token_input = gr.Textbox(label="Hugging Face Token (optional)", placeholder="Enter your HF token") | |
kwargs_input = gr.JSON(label="Additional kwargs", value=default_tools, render=False) | |
output = gr.TextArea(label="Formatted conversation") | |
model_name_input.change(fn=update_template_dropdown, inputs=model_name_input, outputs=template_dropdown) | |
gr.Interface( | |
description=description_text, | |
fn=apply_chat_template, | |
inputs=[ | |
model_name_input, | |
conversation_input, | |
add_generation_prompt_checkbox, | |
cleanup_whitespace_checkbox, | |
template_dropdown, | |
hf_token_input, | |
kwargs_input | |
], | |
outputs=output | |
) | |
demo.launch() |