Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import tqdm | |
from torch.nn import functional as F | |
from core.layers import Block | |
class GPTLanguageModel(nn.Module): | |
def __init__(self, vocab_size, n_embd, block_size, n_head, n_layer, dropout, device, name = "GPT"): | |
super().__init__() | |
self.name = name | |
self.block_size = block_size | |
self.device = device | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
self.position_embedding_table = nn.Embedding(block_size, n_embd) | |
self.blocks = nn.Sequential(*[Block(n_embd, n_head, block_size, dropout) for _ in range(n_layer)]) | |
self.ln_f = nn.LayerNorm(n_embd) | |
self.lm_head = nn.Linear(n_embd, vocab_size) | |
self.apply(self._init_weights) | |
self.history = {} | |
self.vocab_size = vocab_size | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
assert torch.all(idx < self.vocab_size), f"Input indices must be less than vocab_size ({self.vocab_size})" | |
assert T <= self.block_size, f"Input sequence length ({T}) must be <= block_size ({self.block_size})" | |
tok_emb = self.token_embedding_table(idx) | |
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) | |
x = tok_emb + pos_emb | |
x = self.blocks(x) | |
x = self.ln_f(x) | |
logits = self.lm_head(x) | |
if targets is None: | |
loss = None | |
else: | |
B, T, C = logits.shape | |
logits = logits.view(B * T, C) | |
targets = targets.view(B * T) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens, max_seq_length=200, temperature=1.0): | |
for _ in range(max_new_tokens): | |
if idx.size(1) > max_seq_length: | |
idx = idx[:, -max_seq_length:] | |
idx_cond = idx[:, -self.block_size:] | |
logits, _ = self(idx_cond) | |
logits = logits[:, -1, :] / temperature | |
probs = F.softmax(logits, dim=-1) | |
idx_next = torch.multinomial(probs, num_samples=1) | |
idx = torch.cat((idx, idx_next), dim=1) | |
yield idx | |