LoomRAG / utils.py
NotShrirang's picture
feat: add audio data input
8ed49ee
import clip
from datetime import datetime
import faiss
import pandas as pd
import os
from sentence_transformers import SentenceTransformer
import streamlit as st
import torch
import whisper
device = "cuda" if torch.cuda.is_available() else "cpu"
@st.cache_resource
def load_clip_model():
model, preprocess = clip.load("ViT-B/32", device=device)
return model, preprocess
@st.cache_resource
def load_text_embedding_model():
model = SentenceTransformer("all-MiniLM-L6-v2")
return model
@st.cache_resource
def load_whisper_model():
model = whisper.load_model("small")
return model
def load_image_index():
index = faiss.read_index('./vectorstore/image_index.index')
data = pd.read_csv("./vectorstore/image_data.csv")
return index, data
def load_text_index():
index = faiss.read_index('./vectorstore/text_index.index')
data = pd.read_csv("./vectorstore/text_data.csv")
return index, data
def load_audio_index():
index = faiss.read_index('./vectorstore/audio_index.index')
data = pd.read_csv("./vectorstore/audio_data.csv")
return index, data
def cosine_similarity(a, b):
return torch.cosine_similarity(a, b)
def get_local_files(directory: str, extensions: list = None, get_details: bool = False):
files = os.listdir(directory)
if not extensions:
if get_details:
return [{
"file_name": file,
"file_size": os.path.getsize(os.path.join(directory, file)),
"file_created": datetime.fromtimestamp(os.path.getctime(os.path.join(directory, file)))
} for file in files]
else:
return files
else:
if get_details:
filtered_files = []
for file in files:
file_extension = file.split(".")[-1]
if file_extension in extensions:
filtered_files.append({
"file_name": file,
"file_size": os.path.getsize(os.path.join(directory, file)),
"file_created": datetime.fromtimestamp(os.path.getctime(os.path.join(directory, file)))
})
return filtered_files
else:
return [file for file in files if file.endswith(extensions(extensions))]