File size: 11,812 Bytes
ea30afb 9fdba0a ef38c60 908d449 eeb8511 67bb418 d21820e 1e2bae1 b00e316 ba6704b 831d5c8 1e2bae1 ba6704b 96ca133 b00e316 eeb8511 8858508 eeb8511 7916190 eeb8511 d21820e 67bb418 12a2b97 ef38c60 d21820e ef38c60 ea30afb 2c0f2ed d21820e ef38c60 b7463e4 ef38c60 b7463e4 ef38c60 b7463e4 ef38c60 9fdba0a e54f8ed 9fdba0a eeb8511 b5796cd ef38c60 7916190 2c0f2ed 42be940 ef38c60 9fdba0a ef38c60 ea30afb 908d449 2c0f2ed 42be940 eeb8511 ef38c60 b5796cd 7916190 ef38c60 7916190 eeb8511 ef38c60 b5796cd 7916190 ef38c60 7916190 fc9a27f eeb8511 9fdba0a e54f8ed fc9a27f e54f8ed 908d449 b5796cd 9c1ce00 b5796cd 908d449 eeb8511 ea30afb 908d449 67bb418 b7463e4 67bb418 908d449 ef38c60 908d449 ef38c60 7916190 2c0f2ed 7916190 2c0f2ed ea8378f 2c0f2ed ea8378f 2c0f2ed 42be940 908d449 9fdba0a eeb8511 9fdba0a b5796cd ef38c60 7916190 2c0f2ed 42be940 eeb8511 908d449 eeb8511 42be940 1e2bae1 eeb8511 908d449 ef38c60 a0d4a35 908d449 a0d4a35 ef38c60 7916190 2c0f2ed 42be940 908d449 9fdba0a 908d449 9fdba0a 908d449 9fdba0a 908d449 9fdba0a 908d449 ef38c60 fc7864f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
TITLE = """<h1 align="center">🎮Chat with Gemini 1.5 Pro🔥 (Deprecated)</h1>"""
SUBTITLE = """
<h2 align="center">New version here: https://huggingface.co./spaces/NotAiLOL/Gemini-Playground-Beta-Preview</h2>
<h2 align="center">Try <b>Gemini 1.5 Pro Experimental 0801</b> 🐦🔥 -- Beat GPT-4o in Lmsys Leaderboard (2024/8/4)</h2>
"""
NOTICES = """
Notices:
- UPDATES (2024-8-12): END OF SUPPORT, new version: https://huggingface.co./spaces/NotAiLOL/Gemini-Playground-Beta-Preview
- This version will be removed on the 1st Sep 2024.
"""
DUPLICATE = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<a href="https://huggingface.co./spaces/NotAiLOL/Gemini-Pro-Playground?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
</a>
<span>Duplicate the Space and run securely with your
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
</span>
</div>
"""
AVATAR_IMAGES = (
None,
"https://media.roboflow.com/spaces/gemini-icon.png"
)
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
if not stop_sequences:
return None
return [sequence.strip() for sequence in stop_sequences.split(",")]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def preprocess_chat_history(
history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
messages = []
for user_message, model_message in history:
if isinstance(user_message, tuple):
pass
elif user_message is not None:
messages.append({'role': 'user', 'parts': [user_message]})
if model_message is not None:
messages.append({'role': 'model', 'parts': [model_message]})
return messages
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image = preprocess_image(image)
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
# def bot(
# google_key: str,
# model_name: str,
# files: Optional[List[str]],
# temperature: float,
# max_output_tokens: int,
# stop_sequences: str,
# top_k: int,
# top_p: float,
# chatbot: CHAT_HISTORY
# ):
# if len(chatbot) == 0:
# return chatbot
# google_key = google_key if google_key else GOOGLE_API_KEY
# if not google_key:
# raise ValueError(
# "GOOGLE_API_KEY is not set. "
# "Please follow the instructions in the README to set it up.")
# genai.configure(api_key=google_key)
# generation_config = genai.types.GenerationConfig(
# temperature=temperature,
# max_output_tokens=max_output_tokens,
# stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
# top_k=top_k,
# top_p=top_p)
# if files:
# text_prompt = [chatbot[-1][0]] \
# if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
# else []
# image_prompt = [Image.open(file).convert('RGB') for file in files]
# model = genai.GenerativeModel(model_name)
# response = model.generate_content(
# text_prompt + image_prompt,
# stream=True,
# generation_config=generation_config)
# else:
# messages = preprocess_chat_history(chatbot)
# model = genai.GenerativeModel(model_name)
# response = model.generate_content(
# messages,
# stream=True,
# generation_config=generation_config)
# # streaming effect
# chatbot[-1][1] = ""
# for chunk in response:
# for i in range(0, len(chunk.text), 10):
# section = chunk.text[i:i + 10]
# chatbot[-1][1] += section
# time.sleep(0.01)
# yield chatbot
# -------------------------------------------------------------------
def bot(
google_key: str,
model_name: str,
files: Optional[List[str]],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: CHAT_HISTORY
):
if len(chatbot) == 0:
return chatbot
google_key = google_key if google_key else GOOGLE_API_KEY
if not google_key:
raise ValueError(
"GOOGLE_API_KEY is not set. "
"Please follow the instructions in the README to set it up.")
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p)
if files:
text_prompt = [chatbot[-1][0]] \
if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
else []
image_prompt = [Image.open(file).convert('RGB') for file in files]
model = genai.GenerativeModel(model_name)
response = model.generate_content(
text_prompt + image_prompt,
stream=True,
generation_config=generation_config)
else:
messages = preprocess_chat_history(chatbot)
model = genai.GenerativeModel(model_name)
response = model.generate_content(
messages,
stream=True,
generation_config=generation_config
)
# streaming effect
chatbot[-1][1] = ""
for chunk in response:
if not chunk.text:
print("chunk.text is empty")
continue
print(f"chunk.text: {chunk.text}")
try:
for i in range(0, len(chunk.text)):
section = chunk.text[i:i + 1]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
except IndexError as e:
print(f"IndexError: {e}")
# Handle the error appropriately
# -------------------------------------------------------------------
model_selection = gr.Dropdown(
["gemini-1.5-flash",
"gemini-1.5-pro",
"gemini-1.5-pro-exp-0801"
],
label="Select Gemini Model",
value="gemini-1.5-pro"
)
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
value="",
type="password",
placeholder="...",
info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
label='Gemini',
bubble_full_width=False,
avatar_images=AVATAR_IMAGES,
scale=2,
height=400
)
text_prompt_component = gr.Textbox(
placeholder="Hi there! [press Enter]", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.4,
step=0.05,
label="Temperature",
info=(
"Temperature controls the degree of randomness in token selection. Lower "
"temperatures are good for prompts that expect a true or correct response, "
"while higher temperatures can lead to more diverse or unexpected results. "
))
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=8192,
value=4096,
step=1,
label="Token limit",
info=(
"Token limit determines the maximum amount of text output from one prompt. A "
"token is approximately four characters. The default value is 4096."
))
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
value="",
type="text",
placeholder="STOP, END",
info=(
"A stop sequence is a series of characters (including spaces) that stops "
"response generation if the model encounters it. The sequence is not included "
"as part of the response. You can add up to five stop sequences."
))
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K",
info=(
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
"selected token is the most probable among all tokens in the model’s "
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
"next token is selected from among the 3 most probable tokens (using "
"temperature)."
))
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P",
info=(
"Top-p changes how the model selects tokens for output. Tokens are selected "
"from most probable to least until the sum of their probabilities equals the "
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
"and .1 and the top-p value is .5, then the model will select either A or B as "
"the next token (using temperature). "
))
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
google_key_component,
model_selection,
upload_button_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.Markdown(NOTICES)
gr.HTML(DUPLICATE)
with gr.Column():
google_key_component.render()
chatbot_component.render()
text_prompt_component.render()
with gr.Row():
model_selection.render()
upload_button_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
demo.queue(max_size=99).launch(debug=False, show_error=True)
|