File size: 9,852 Bytes
cee2505
 
 
 
 
 
 
803d178
cee2505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506027c
cee2505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b63fa
1a28b7b
 
 
 
f0b63fa
1a28b7b
 
 
 
 
 
 
 
 
 
f0b63fa
 
 
 
 
 
 
1a28b7b
 
f0b63fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a28b7b
f0b63fa
1a28b7b
 
 
f0b63fa
 
 
 
 
1a28b7b
 
 
f0b63fa
1a28b7b
273788e
 
 
 
1a28b7b
273788e
 
f0b63fa
273788e
 
f0b63fa
273788e
 
 
 
1a28b7b
 
 
 
 
 
 
f0b63fa
 
 
 
 
 
 
 
273788e
 
1a28b7b
 
 
f0b63fa
1a28b7b
 
 
 
f0b63fa
1a28b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b63fa
1a28b7b
 
 
273788e
f0b63fa
 
 
273788e
 
 
1a28b7b
 
 
 
 
273788e
 
 
1a28b7b
a14fe35
cee2505
 
 
 
a14fe35
cee2505
 
a14fe35
cee2505
 
a14fe35
cee2505
 
a14fe35
cee2505
 
 
 
 
 
 
b9f798b
cee2505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a14fe35
cee2505
a14fe35
cee2505
 
 
a14fe35
cee2505
 
 
 
 
 
 
 
a14fe35
cee2505
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# import dependencies
import gradio as gr
from openai import OpenAI
import os
import re

# define the openai key
api_key = "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"

# make an instance of the openai client
client = OpenAI(api_key = api_key)


# finetuned model instance
finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"

# function to humanize the text
def humanize_text(AI_text):
  """Humanizes the provided AI text using the fine-tuned model."""
  response = completion = client.chat.completions.create(
  model=finetuned_model,
  temperature = 0.90,
  messages=[
    {"role": "system", "content": """
    You are a text humanizer.
    You humanize AI generated text.
    The text must appear like humanly written.
    THE INPUT AND THE OUTPUT TEXT SHOULD HAVE THE SAME FORMAT.
    THE HEADINGS AND THE BULLETS IN THE INPUT SHOULD REMAIN IN PLACE"""},
    {"role": "user", "content": f"THE LANGUAGE OF THE INPUT AND THE OUTPUT MUST BE SAME. THE SENTENCES SHOULD NOT BE SHORT LENGTH - THEY SHOULD BE SAME AS IN THE INPUT. ALSO THE PARAGRAPHS SHOULD NOT BE SHORT EITHER - PARAGRAPHS MUST HAVE THE SAME LENGTH"},
    {"role": "user", "content": f"Humanize the text. Keep the output format i.e. the bullets and the headings as it is and dont use the list of words that are not permissible. \nTEXT: {AI_text}"}
  ]
  )

  humanized_text = response.choices[0].message.content.strip()

  return humanized_text


# Gradio interface definition
interface = gr.Interface(
  fn=humanize_text,
  inputs="textbox",
  outputs="textbox",
  title="AI Text Humanizer: NoaiGPT.com Demo",
  description="Enter AI-generated text and get a human-written version.",
)

# Launch the Gradio app
interface.launch(debug = True)

# # import gradio as gr
# # from openai import OpenAI
# # import os
# # import re
# # from transformers import pipeline

# # # define the openai key
# # api_key = "sk-proj-UCoZZMs4MyfyHwXdHjT8T3BlbkFJjYkSZyPfIPNqXfXwoekm"

# # # make an instance of the openai client
# # client = OpenAI(api_key = api_key)

# # # finetuned model instance
# # finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"

# # # Load the AI detection model
# # pipe = pipeline("text-classification", model="tommyliphys/ai-detector-distilbert")

# # # Define the function to get predictions
# # def get_prediction(text):
# #     return pipe(text)[0]

# # # function to humanize the text
# # def humanize_text(AI_text):
# #     """Humanizes the provided AI text using the fine-tuned model."""
# #     humanized_text = AI_text
# #     attempts = 0
# #     max_attempts = 5

# #     while attempts < max_attempts:
# #         response = client.chat.completions.create(
# #             model=finetuned_model,
# #             temperature=0.85,
# #             messages=[
# #                 {"role": "system", "content": """
# #                 You are a text humanizer.
# #                 You humanize AI generated text.
# #                 The text must appear like humanly written.
# #                 THE INPUT AND THE OUTPUT TEXT SHOULD HAVE THE SAME FORMAT.
# #                 THE HEADINGS AND THE BULLETS IN THE INPUT SHOULD REMAIN IN PLACE"""},
# #                 {"role": "user", "content": "THE LANGUAGE OF THE INPUT AND THE OUTPUT MUST BE SAME. THE SENTENCES SHOULD NOT BE SHORT LENGTH - THEY SHOULD BE SAME AS IN THE INPUT. ALSO THE PARAGRAPHS SHOULD NOT BE SHORT EITHER - PARAGRAPHS MUST HAVE THE SAME LENGTH"},
# #                 {"role": "user", "content": f"Humanize the text. Keep the output format i.e. the bullets and the headings as it is and dont use the list of words that are not permissible. \nTEXT: {humanized_text}"}
# #             ]
# #         )

# #         humanized_text = response.choices[0].message.content.strip()
        
# #         # Check if the humanized text is still detected as AI
# #         prediction = get_prediction(humanized_text)
        
# #         if prediction['label'] != 'AI':
# #             break
        
# #         attempts += 1

# #     return humanized_text

# # # Gradio interface definition
# # interface = gr.Interface(
# #     fn=humanize_text,
# #     inputs="textbox",
# #     outputs="textbox",
# #     title="AI Text Humanizer: NoaiGPT.com Demo",
# #     description="Enter AI-generated text and get a human-written version.",
# # )

# # # Launch the Gradio app
# # interface.launch(debug=True)

# import gradio as gr
# from openai import OpenAI
# import os
# import re
# from transformers import pipeline

# # define the openai key
# api_key = "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"

# # make an instance of the openai client
# client = OpenAI(api_key=api_key)

# # finetuned model instance
# finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"

# # Load the AI detection model
# pipe = pipeline("text-classification", model="tommyliphys/ai-detector-distilbert")

# # Define the function to get predictions
# def get_prediction(text):
#     return pipe(text)[0]

# # Function to clean the text
# def clean_text(text):
#     # Remove double asterisks
#     text = re.sub(r'\*\*', '', text)
#     # Remove double hash symbols
#     text = re.sub(r'##', '', text)
#     return text

# # function to humanize the text
# def humanize_text(AI_text):
#     """Humanizes the provided AI text using the fine-tuned model."""
#     humanized_text = AI_text
#     attempts = 0
#     max_attempts = 10

#     while attempts < max_attempts:
#         response = client.chat.completions.create(
#             model=finetuned_model,
#             temperature=0.90,
#             messages=[
#                 {"role": "system", "content": """
#                 You are a text humanizer.
#                 You humanize AI generated text.
#                 The text must appear like humanly written.
#                 THE INPUT AND THE OUTPUT TEXT SHOULD HAVE THE SAME FORMAT.
#                 THE HEADINGS AND THE BULLETS IN THE INPUT SHOULD REMAIN IN PLACE"""},
#                 {"role": "user", "content": "THE LANGUAGE OF THE INPUT AND THE OUTPUT MUST BE SAME. THE SENTENCES SHOULD NOT BE SHORT LENGTH - THEY SHOULD BE SAME AS IN THE INPUT. ALSO THE PARAGRAPHS SHOULD NOT BE SHORT EITHER - PARAGRAPHS MUST HAVE THE SAME LENGTH"},
#                 {"role": "user", "content": f"Humanize the text. Keep the output format i.e. the bullets and the headings as it is and dont use the list of words that are not permissible. \nTEXT: {humanized_text}"}
#             ]
#         )

#         humanized_text = response.choices[0].message.content.strip()
        
#         # Check if the humanized text is still detected as AI
#         prediction = get_prediction(humanized_text)
        
#         if prediction['label'] == 'human' and prediction['score'] > 0.9:
#             break
        
#         attempts += 1

#     # Clean the humanized text
#     cleaned_text = clean_text(humanized_text)
#     return cleaned_text

# # Gradio interface definition
# interface = gr.Interface(
#     fn=humanize_text,
#     inputs="textbox",
#     outputs="textbox",
#     title="AI Text Humanizer: NoaiGPT.com Demo",
#     description="Enter AI-generated text and get a human-written version.",
# )

# # Launch the Gradio app
# interface.launch(debug=True)

# import gradio as gr
# from openai import OpenAI
# import os
# import re

# # define the openai key
# api_key = "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"

# # make an instance of the openai client
# client = OpenAI(api_key=api_key)

# # finetuned model instance
# finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"

# # Function to clean the text
# def clean_text(text):
#     # Remove double asterisks
#     text = re.sub(r'\*\*', '', text)
#     # Remove double hash symbols
#     text = re.sub(r'##', '', text)
#     return text

# # function to humanize the text
# def humanize_text(AI_text):
#     """Humanizes the provided AI text using the fine-tuned model."""
#     humanized_text = AI_text
#     attempts = 0
#     max_attempts = 10

#     while attempts < max_attempts:
#         response = client.chat.completions.create(
#             model=finetuned_model,
#             temperature=0.90,
#             messages=[
#                 {"role": "system", "content": """
#                 You are a text humanizer.
#                 You humanize AI generated text.
#                 The text must appear like humanly written.
#                 THE INPUT AND THE OUTPUT TEXT SHOULD HAVE THE SAME FORMAT.
#                 THE HEADINGS AND THE BULLETS IN THE INPUT SHOULD REMAIN IN PLACE"""},
#                 {"role": "user", "content": "THE LANGUAGE OF THE INPUT AND THE OUTPUT MUST BE SAME. THE SENTENCES SHOULD NOT BE SHORT LENGTH - THEY SHOULD BE SAME AS IN THE INPUT. ALSO THE PARAGRAPHS SHOULD NOT BE SHORT EITHER - PARAGRAPHS MUST HAVE THE SAME LENGTH"},
#                 {"role": "user", "content": f"Humanize the text. Keep the output format i.e. the bullets and the headings as it is and dont use the list of words that are not permissible. \nTEXT: {humanized_text}"}
#             ]
#         )

#         humanized_text = response.choices[0].message.content.strip()
        
#         attempts += 1

#     # Clean the humanized text
#     cleaned_text = clean_text(humanized_text)
#     return cleaned_text

# # Gradio interface definition
# interface = gr.Interface(
#     fn=humanize_text,
#     inputs="textbox",
#     outputs="textbox",
#     title="AI Text Humanizer: NoaiGPT.com Demo",
#     description="Enter AI-generated text and get a human-written version.",
# )

# # Launch the Gradio app
# interface.launch(debug=True)