Spaces:
Paused
Paused
Merge from master
Browse files- app.py +63 -10
- configs/default_parameters.yaml +6 -0
- docker-compose.yaml +0 -2
- modules/ui/htmls.py +1 -1
- modules/utils/cli_manager.py +12 -0
- modules/utils/files_manager.py +7 -1
- modules/utils/paths.py +8 -1
- modules/uvr/music_separator.py +183 -0
- modules/whisper/faster_whisper_inference.py +3 -1
- modules/whisper/insanely_fast_whisper_inference.py +4 -2
- modules/whisper/whisper_Inference.py +4 -2
- modules/whisper/whisper_base.py +72 -3
- modules/whisper/whisper_factory.py +12 -5
- modules/whisper/whisper_parameter.py +48 -17
- notebook/whisper-webui.ipynb +3 -2
- requirements.txt +3 -1
app.py
CHANGED
@@ -4,13 +4,15 @@ import gradio as gr
|
|
4 |
import yaml
|
5 |
|
6 |
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
|
7 |
-
INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH
|
|
|
8 |
from modules.utils.files_manager import load_yaml
|
9 |
from modules.whisper.whisper_factory import WhisperFactory
|
10 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
11 |
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
|
12 |
from modules.translation.nllb_inference import NLLBInference
|
13 |
from modules.ui.htmls import *
|
|
|
14 |
from modules.utils.youtube_manager import get_ytmetas
|
15 |
from modules.translation.deepl_api import DeepLAPI
|
16 |
from modules.whisper.whisper_parameter import *
|
@@ -25,10 +27,9 @@ class App:
|
|
25 |
whisper_model_dir=self.args.whisper_model_dir,
|
26 |
faster_whisper_model_dir=self.args.faster_whisper_model_dir,
|
27 |
insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
|
|
|
28 |
output_dir=self.args.output_dir,
|
29 |
)
|
30 |
-
print(f"Use \"{self.args.whisper_type}\" implementation")
|
31 |
-
print(f"Device \"{self.whisper_inf.device}\" is detected")
|
32 |
self.nllb_inf = NLLBInference(
|
33 |
model_dir=self.args.nllb_model_dir,
|
34 |
output_dir=os.path.join(self.args.output_dir, "translations")
|
@@ -37,11 +38,14 @@ class App:
|
|
37 |
output_dir=os.path.join(self.args.output_dir, "translations")
|
38 |
)
|
39 |
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
|
|
|
|
40 |
|
41 |
def create_whisper_parameters(self):
|
42 |
whisper_params = self.default_params["whisper"]
|
43 |
vad_params = self.default_params["vad"]
|
44 |
diarization_params = self.default_params["diarization"]
|
|
|
45 |
|
46 |
with gr.Row():
|
47 |
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
|
@@ -127,6 +131,16 @@ class App:
|
|
127 |
precision=0)
|
128 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
with gr.Accordion("VAD", open=False):
|
131 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
|
132 |
interactive=True)
|
@@ -173,7 +187,9 @@ class App:
|
|
173 |
hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
|
174 |
language_detection_threshold=nb_language_detection_threshold,
|
175 |
language_detection_segments=nb_language_detection_segments,
|
176 |
-
prompt_reset_on_temperature=sld_prompt_reset_on_temperature
|
|
|
|
|
177 |
),
|
178 |
dd_file_format,
|
179 |
cb_timestamp
|
@@ -183,6 +199,7 @@ class App:
|
|
183 |
translation_params = self.default_params["translation"]
|
184 |
deepl_params = translation_params["deepl"]
|
185 |
nllb_params = translation_params["nllb"]
|
|
|
186 |
|
187 |
with self.app:
|
188 |
with gr.Row():
|
@@ -254,7 +271,7 @@ class App:
|
|
254 |
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
|
255 |
btn_openfolder = gr.Button('📂', scale=1)
|
256 |
|
257 |
-
params = [mic_input, dd_file_format]
|
258 |
|
259 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
260 |
inputs=params + whisper_params.as_list(),
|
@@ -328,6 +345,39 @@ class App:
|
|
328 |
inputs=None,
|
329 |
outputs=None)
|
330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
# Launch the app with optional gradio settings
|
332 |
args = self.args
|
333 |
|
@@ -347,7 +397,8 @@ class App:
|
|
347 |
if os.path.exists(folder_path):
|
348 |
os.system(f"start {folder_path}")
|
349 |
else:
|
350 |
-
|
|
|
351 |
|
352 |
@staticmethod
|
353 |
def on_change_models(model_size: str):
|
@@ -362,16 +413,16 @@ class App:
|
|
362 |
parser = argparse.ArgumentParser()
|
363 |
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
364 |
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
|
365 |
-
parser.add_argument('--share', type=
|
366 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
367 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
368 |
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
|
369 |
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
|
370 |
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
|
371 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
372 |
-
parser.add_argument('--colab', type=
|
373 |
-
parser.add_argument('--api_open', type=
|
374 |
-
parser.add_argument('--inbrowser', type=
|
375 |
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
|
376 |
help='Directory path of the whisper model')
|
377 |
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
|
@@ -383,6 +434,8 @@ parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MOD
|
|
383 |
help='Directory path of the diarization model')
|
384 |
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
|
385 |
help='Directory path of the Facebook NLLB model')
|
|
|
|
|
386 |
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
|
387 |
_args = parser.parse_args()
|
388 |
|
|
|
4 |
import yaml
|
5 |
|
6 |
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
|
7 |
+
INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
|
8 |
+
UVR_MODELS_DIR)
|
9 |
from modules.utils.files_manager import load_yaml
|
10 |
from modules.whisper.whisper_factory import WhisperFactory
|
11 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
12 |
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
|
13 |
from modules.translation.nllb_inference import NLLBInference
|
14 |
from modules.ui.htmls import *
|
15 |
+
from modules.utils.cli_manager import str2bool
|
16 |
from modules.utils.youtube_manager import get_ytmetas
|
17 |
from modules.translation.deepl_api import DeepLAPI
|
18 |
from modules.whisper.whisper_parameter import *
|
|
|
27 |
whisper_model_dir=self.args.whisper_model_dir,
|
28 |
faster_whisper_model_dir=self.args.faster_whisper_model_dir,
|
29 |
insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
|
30 |
+
uvr_model_dir=self.args.uvr_model_dir,
|
31 |
output_dir=self.args.output_dir,
|
32 |
)
|
|
|
|
|
33 |
self.nllb_inf = NLLBInference(
|
34 |
model_dir=self.args.nllb_model_dir,
|
35 |
output_dir=os.path.join(self.args.output_dir, "translations")
|
|
|
38 |
output_dir=os.path.join(self.args.output_dir, "translations")
|
39 |
)
|
40 |
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
41 |
+
print(f"Use \"{self.args.whisper_type}\" implementation")
|
42 |
+
print(f"Device \"{self.whisper_inf.device}\" is detected")
|
43 |
|
44 |
def create_whisper_parameters(self):
|
45 |
whisper_params = self.default_params["whisper"]
|
46 |
vad_params = self.default_params["vad"]
|
47 |
diarization_params = self.default_params["diarization"]
|
48 |
+
uvr_params = self.default_params["bgm_separation"]
|
49 |
|
50 |
with gr.Row():
|
51 |
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
|
|
|
131 |
precision=0)
|
132 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
133 |
|
134 |
+
with gr.Accordion("BGM Separation", open=False):
|
135 |
+
cb_bgm_separation = gr.Checkbox(label="Enable BGM Separation Filter", value=uvr_params["is_separate_bgm"],
|
136 |
+
interactive=True)
|
137 |
+
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
138 |
+
choices=self.whisper_inf.music_separator.available_devices)
|
139 |
+
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
|
140 |
+
choices=self.whisper_inf.music_separator.available_models)
|
141 |
+
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
|
142 |
+
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output", value=uvr_params["save_file"])
|
143 |
+
|
144 |
with gr.Accordion("VAD", open=False):
|
145 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
|
146 |
interactive=True)
|
|
|
187 |
hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
|
188 |
language_detection_threshold=nb_language_detection_threshold,
|
189 |
language_detection_segments=nb_language_detection_segments,
|
190 |
+
prompt_reset_on_temperature=sld_prompt_reset_on_temperature, is_bgm_separate=cb_bgm_separation,
|
191 |
+
uvr_device=dd_uvr_device, uvr_model_size=dd_uvr_model_size, uvr_segment_size=nb_uvr_segment_size,
|
192 |
+
uvr_save_file=cb_uvr_save_file
|
193 |
),
|
194 |
dd_file_format,
|
195 |
cb_timestamp
|
|
|
199 |
translation_params = self.default_params["translation"]
|
200 |
deepl_params = translation_params["deepl"]
|
201 |
nllb_params = translation_params["nllb"]
|
202 |
+
uvr_params = self.default_params["bgm_separation"]
|
203 |
|
204 |
with self.app:
|
205 |
with gr.Row():
|
|
|
271 |
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
|
272 |
btn_openfolder = gr.Button('📂', scale=1)
|
273 |
|
274 |
+
params = [mic_input, dd_file_format, cb_timestamp]
|
275 |
|
276 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
277 |
inputs=params + whisper_params.as_list(),
|
|
|
345 |
inputs=None,
|
346 |
outputs=None)
|
347 |
|
348 |
+
with gr.TabItem("BGM Separation"):
|
349 |
+
files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
|
350 |
+
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
351 |
+
choices=self.whisper_inf.music_separator.available_devices)
|
352 |
+
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
|
353 |
+
choices=self.whisper_inf.music_separator.available_models)
|
354 |
+
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
|
355 |
+
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output",
|
356 |
+
value=True, visible=False)
|
357 |
+
btn_run = gr.Button("SEPARATE BACKGROUND MUSIC", variant="primary")
|
358 |
+
with gr.Column():
|
359 |
+
with gr.Row():
|
360 |
+
ad_instrumental = gr.Audio(label="Instrumental", scale=8)
|
361 |
+
btn_open_instrumental_folder = gr.Button('📂', scale=1)
|
362 |
+
with gr.Row():
|
363 |
+
ad_vocals = gr.Audio(label="Vocals", scale=8)
|
364 |
+
btn_open_vocals_folder = gr.Button('📂', scale=1)
|
365 |
+
|
366 |
+
btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
|
367 |
+
inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
|
368 |
+
cb_uvr_save_file],
|
369 |
+
outputs=[ad_instrumental, ad_vocals])
|
370 |
+
btn_open_instrumental_folder.click(inputs=None,
|
371 |
+
outputs=None,
|
372 |
+
fn=lambda: self.open_folder(os.path.join(
|
373 |
+
self.args.output_dir, "UVR", "instrumental"
|
374 |
+
)))
|
375 |
+
btn_open_vocals_folder.click(inputs=None,
|
376 |
+
outputs=None,
|
377 |
+
fn=lambda: self.open_folder(os.path.join(
|
378 |
+
self.args.output_dir, "UVR", "vocals"
|
379 |
+
)))
|
380 |
+
|
381 |
# Launch the app with optional gradio settings
|
382 |
args = self.args
|
383 |
|
|
|
397 |
if os.path.exists(folder_path):
|
398 |
os.system(f"start {folder_path}")
|
399 |
else:
|
400 |
+
os.makedirs(folder_path, exist_ok=True)
|
401 |
+
print(f"The directory path {folder_path} has newly created.")
|
402 |
|
403 |
@staticmethod
|
404 |
def on_change_models(model_size: str):
|
|
|
413 |
parser = argparse.ArgumentParser()
|
414 |
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
415 |
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
|
416 |
+
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
|
417 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
418 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
419 |
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
|
420 |
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
|
421 |
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
|
422 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
423 |
+
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
424 |
+
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True, help='Enable api or not in Gradio')
|
425 |
+
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True, help='Whether to automatically start Gradio app or not')
|
426 |
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
|
427 |
help='Directory path of the whisper model')
|
428 |
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
|
|
|
434 |
help='Directory path of the diarization model')
|
435 |
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
|
436 |
help='Directory path of the Facebook NLLB model')
|
437 |
+
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
|
438 |
+
help='Directory path of the UVR model')
|
439 |
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
|
440 |
_args = parser.parse_args()
|
441 |
|
configs/default_parameters.yaml
CHANGED
@@ -44,6 +44,12 @@ diarization:
|
|
44 |
is_diarize: false
|
45 |
hf_token: ""
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
translation:
|
48 |
deepl:
|
49 |
api_key: ""
|
|
|
44 |
is_diarize: false
|
45 |
hf_token: ""
|
46 |
|
47 |
+
bgm_separation:
|
48 |
+
is_separate_bgm: false
|
49 |
+
model_size: "UVR-MDX-NET-Inst_HQ_4"
|
50 |
+
segment_size: 256
|
51 |
+
save_file: false
|
52 |
+
|
53 |
translation:
|
54 |
deepl:
|
55 |
api_key: ""
|
docker-compose.yaml
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
version: '3.8'
|
2 |
-
|
3 |
services:
|
4 |
app:
|
5 |
build: .
|
|
|
|
|
|
|
1 |
services:
|
2 |
app:
|
3 |
build: .
|
modules/ui/htmls.py
CHANGED
@@ -38,7 +38,7 @@ CSS = """
|
|
38 |
"""
|
39 |
|
40 |
MARKDOWN = """
|
41 |
-
### [Whisper
|
42 |
"""
|
43 |
|
44 |
|
|
|
38 |
"""
|
39 |
|
40 |
MARKDOWN = """
|
41 |
+
### [Whisper-WebUI](https://github.com/jhj0517/Whsiper-WebUI)
|
42 |
"""
|
43 |
|
44 |
|
modules/utils/cli_manager.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
|
4 |
+
def str2bool(v):
|
5 |
+
if isinstance(v, bool):
|
6 |
+
return v
|
7 |
+
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
8 |
+
return True
|
9 |
+
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
10 |
+
return False
|
11 |
+
else:
|
12 |
+
raise argparse.ArgumentTypeError('Boolean value expected.')
|
modules/utils/files_manager.py
CHANGED
@@ -29,7 +29,8 @@ def save_yaml(data: dict, path: str = DEFAULT_PARAMETERS_CONFIG_PATH):
|
|
29 |
|
30 |
|
31 |
def get_media_files(folder_path, include_sub_directory=False):
|
32 |
-
video_extensions = ['*.mp4', '*.mkv', '*.flv', '*.avi', '*.mov', '*.wmv'
|
|
|
33 |
audio_extensions = ['*.mp3', '*.wav', '*.aac', '*.flac', '*.ogg', '*.m4a']
|
34 |
media_extensions = video_extensions + audio_extensions
|
35 |
|
@@ -61,3 +62,8 @@ def format_gradio_files(files: list):
|
|
61 |
gradio_files.append(NamedString(file))
|
62 |
return gradio_files
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def get_media_files(folder_path, include_sub_directory=False):
|
32 |
+
video_extensions = ['*.mp4', '*.mkv', '*.flv', '*.avi', '*.mov', '*.wmv', '*.webm', '*.m4v', '*.mpeg', '*.mpg',
|
33 |
+
'*.3gp', '*.f4v', '*.ogv', '*.vob', '*.mts', '*.m2ts', '*.divx', '*.mxf', '*.rm', '*.rmvb']
|
34 |
audio_extensions = ['*.mp3', '*.wav', '*.aac', '*.flac', '*.ogg', '*.m4a']
|
35 |
media_extensions = video_extensions + audio_extensions
|
36 |
|
|
|
62 |
gradio_files.append(NamedString(file))
|
63 |
return gradio_files
|
64 |
|
65 |
+
|
66 |
+
def is_video(file_path):
|
67 |
+
video_extensions = ['.mp4', '.mkv', '.avi', '.mov', '.flv', '.wmv', '.webm', '.m4v', '.mpeg', '.mpg', '.3gp']
|
68 |
+
extension = os.path.splitext(file_path)[1].lower()
|
69 |
+
return extension in video_extensions
|
modules/utils/paths.py
CHANGED
@@ -7,10 +7,14 @@ FASTER_WHISPER_MODELS_DIR = os.path.join(WHISPER_MODELS_DIR, "faster-whisper")
|
|
7 |
INSANELY_FAST_WHISPER_MODELS_DIR = os.path.join(WHISPER_MODELS_DIR, "insanely-fast-whisper")
|
8 |
NLLB_MODELS_DIR = os.path.join(MODELS_DIR, "NLLB")
|
9 |
DIARIZATION_MODELS_DIR = os.path.join(MODELS_DIR, "Diarization")
|
|
|
10 |
CONFIGS_DIR = os.path.join(WEBUI_DIR, "configs")
|
11 |
DEFAULT_PARAMETERS_CONFIG_PATH = os.path.join(CONFIGS_DIR, "default_parameters.yaml")
|
12 |
OUTPUT_DIR = os.path.join(WEBUI_DIR, "outputs")
|
13 |
TRANSLATION_OUTPUT_DIR = os.path.join(OUTPUT_DIR, "translations")
|
|
|
|
|
|
|
14 |
|
15 |
for dir_path in [MODELS_DIR,
|
16 |
WHISPER_MODELS_DIR,
|
@@ -18,7 +22,10 @@ for dir_path in [MODELS_DIR,
|
|
18 |
INSANELY_FAST_WHISPER_MODELS_DIR,
|
19 |
NLLB_MODELS_DIR,
|
20 |
DIARIZATION_MODELS_DIR,
|
|
|
21 |
CONFIGS_DIR,
|
22 |
OUTPUT_DIR,
|
23 |
-
TRANSLATION_OUTPUT_DIR
|
|
|
|
|
24 |
os.makedirs(dir_path, exist_ok=True)
|
|
|
7 |
INSANELY_FAST_WHISPER_MODELS_DIR = os.path.join(WHISPER_MODELS_DIR, "insanely-fast-whisper")
|
8 |
NLLB_MODELS_DIR = os.path.join(MODELS_DIR, "NLLB")
|
9 |
DIARIZATION_MODELS_DIR = os.path.join(MODELS_DIR, "Diarization")
|
10 |
+
UVR_MODELS_DIR = os.path.join(MODELS_DIR, "UVR", "MDX_Net_Models")
|
11 |
CONFIGS_DIR = os.path.join(WEBUI_DIR, "configs")
|
12 |
DEFAULT_PARAMETERS_CONFIG_PATH = os.path.join(CONFIGS_DIR, "default_parameters.yaml")
|
13 |
OUTPUT_DIR = os.path.join(WEBUI_DIR, "outputs")
|
14 |
TRANSLATION_OUTPUT_DIR = os.path.join(OUTPUT_DIR, "translations")
|
15 |
+
UVR_OUTPUT_DIR = os.path.join(OUTPUT_DIR, "UVR")
|
16 |
+
UVR_INSTRUMENTAL_OUTPUT_DIR = os.path.join(UVR_OUTPUT_DIR, "instrumental")
|
17 |
+
UVR_VOCALS_OUTPUT_DIR = os.path.join(UVR_OUTPUT_DIR, "vocals")
|
18 |
|
19 |
for dir_path in [MODELS_DIR,
|
20 |
WHISPER_MODELS_DIR,
|
|
|
22 |
INSANELY_FAST_WHISPER_MODELS_DIR,
|
23 |
NLLB_MODELS_DIR,
|
24 |
DIARIZATION_MODELS_DIR,
|
25 |
+
UVR_MODELS_DIR,
|
26 |
CONFIGS_DIR,
|
27 |
OUTPUT_DIR,
|
28 |
+
TRANSLATION_OUTPUT_DIR,
|
29 |
+
UVR_INSTRUMENTAL_OUTPUT_DIR,
|
30 |
+
UVR_VOCALS_OUTPUT_DIR]:
|
31 |
os.makedirs(dir_path, exist_ok=True)
|
modules/uvr/music_separator.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, List, Dict
|
2 |
+
import numpy as np
|
3 |
+
import torchaudio
|
4 |
+
import soundfile as sf
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import gc
|
8 |
+
import gradio as gr
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
from uvr.models import MDX, Demucs, VrNetwork, MDXC
|
12 |
+
from modules.utils.paths import DEFAULT_PARAMETERS_CONFIG_PATH
|
13 |
+
from modules.utils.files_manager import load_yaml, save_yaml, is_video
|
14 |
+
from modules.diarize.audio_loader import load_audio
|
15 |
+
|
16 |
+
class MusicSeparator:
|
17 |
+
def __init__(self,
|
18 |
+
model_dir: Optional[str] = None,
|
19 |
+
output_dir: Optional[str] = None):
|
20 |
+
self.model = None
|
21 |
+
self.device = self.get_device()
|
22 |
+
self.available_devices = ["cpu", "cuda"]
|
23 |
+
self.model_dir = model_dir
|
24 |
+
self.output_dir = output_dir
|
25 |
+
instrumental_output_dir = os.path.join(self.output_dir, "instrumental")
|
26 |
+
vocals_output_dir = os.path.join(self.output_dir, "vocals")
|
27 |
+
os.makedirs(instrumental_output_dir, exist_ok=True)
|
28 |
+
os.makedirs(vocals_output_dir, exist_ok=True)
|
29 |
+
self.audio_info = None
|
30 |
+
self.available_models = ["UVR-MDX-NET-Inst_HQ_4", "UVR-MDX-NET-Inst_3"]
|
31 |
+
self.default_model = self.available_models[0]
|
32 |
+
self.current_model_size = self.default_model
|
33 |
+
self.model_config = {
|
34 |
+
"segment": 256,
|
35 |
+
"split": True
|
36 |
+
}
|
37 |
+
|
38 |
+
def update_model(self,
|
39 |
+
model_name: str = "UVR-MDX-NET-Inst_1",
|
40 |
+
device: Optional[str] = None,
|
41 |
+
segment_size: int = 256):
|
42 |
+
"""
|
43 |
+
Update model with the given model name
|
44 |
+
|
45 |
+
Args:
|
46 |
+
model_name (str): Model name.
|
47 |
+
device (str): Device to use for the model.
|
48 |
+
segment_size (int): Segment size for the prediction.
|
49 |
+
"""
|
50 |
+
if device is None:
|
51 |
+
device = self.device
|
52 |
+
|
53 |
+
self.device = device
|
54 |
+
self.model_config = {
|
55 |
+
"segment": segment_size,
|
56 |
+
"split": True
|
57 |
+
}
|
58 |
+
self.model = MDX(name=model_name,
|
59 |
+
other_metadata=self.model_config,
|
60 |
+
device=self.device,
|
61 |
+
logger=None,
|
62 |
+
model_dir=self.model_dir)
|
63 |
+
|
64 |
+
def separate(self,
|
65 |
+
audio: Union[str, np.ndarray],
|
66 |
+
model_name: str,
|
67 |
+
device: Optional[str] = None,
|
68 |
+
segment_size: int = 256,
|
69 |
+
save_file: bool = False,
|
70 |
+
progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray, List]:
|
71 |
+
"""
|
72 |
+
Separate the background music from the audio.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
audio (Union[str, np.ndarray]): Audio path or numpy array.
|
76 |
+
model_name (str): Model name.
|
77 |
+
device (str): Device to use for the model.
|
78 |
+
segment_size (int): Segment size for the prediction.
|
79 |
+
save_file (bool): Whether to save the separated audio to output path or not.
|
80 |
+
progress (gr.Progress): Gradio progress indicator.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
A Tuple of
|
84 |
+
np.ndarray: Instrumental numpy arrays.
|
85 |
+
np.ndarray: Vocals numpy arrays.
|
86 |
+
file_paths: List of file paths where the separated audio is saved. Return empty when save_file is False.
|
87 |
+
"""
|
88 |
+
if isinstance(audio, str):
|
89 |
+
output_filename, ext = os.path.basename(audio), ".wav"
|
90 |
+
output_filename, orig_ext = os.path.splitext(output_filename)
|
91 |
+
|
92 |
+
if is_video(audio):
|
93 |
+
audio = load_audio(audio)
|
94 |
+
sample_rate = 16000
|
95 |
+
else:
|
96 |
+
self.audio_info = torchaudio.info(audio)
|
97 |
+
sample_rate = self.audio_info.sample_rate
|
98 |
+
else:
|
99 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
100 |
+
output_filename, ext = f"UVR-{timestamp}", ".wav"
|
101 |
+
sample_rate = 16000
|
102 |
+
|
103 |
+
model_config = {
|
104 |
+
"segment": segment_size,
|
105 |
+
"split": True
|
106 |
+
}
|
107 |
+
|
108 |
+
if (self.model is None or
|
109 |
+
self.current_model_size != model_name or
|
110 |
+
self.model_config != model_config or
|
111 |
+
self.model.sample_rate != sample_rate or
|
112 |
+
self.device != device):
|
113 |
+
progress(0, desc="Initializing UVR Model..")
|
114 |
+
self.update_model(
|
115 |
+
model_name=model_name,
|
116 |
+
device=device,
|
117 |
+
segment_size=segment_size
|
118 |
+
)
|
119 |
+
self.model.sample_rate = sample_rate
|
120 |
+
|
121 |
+
progress(0, desc="Separating background music from the audio..")
|
122 |
+
result = self.model(audio)
|
123 |
+
instrumental, vocals = result["instrumental"].T, result["vocals"].T
|
124 |
+
|
125 |
+
file_paths = []
|
126 |
+
if save_file:
|
127 |
+
instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}")
|
128 |
+
vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}")
|
129 |
+
sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV")
|
130 |
+
sf.write(vocals_output_path, vocals, sample_rate, format="WAV")
|
131 |
+
file_paths += [instrumental_output_path, vocals_output_path]
|
132 |
+
|
133 |
+
return instrumental, vocals, file_paths
|
134 |
+
|
135 |
+
def separate_files(self,
|
136 |
+
files: List,
|
137 |
+
model_name: str,
|
138 |
+
device: Optional[str] = None,
|
139 |
+
segment_size: int = 256,
|
140 |
+
save_file: bool = True,
|
141 |
+
progress: gr.Progress = gr.Progress()) -> List[str]:
|
142 |
+
"""Separate the background music from the audio files. Returns only last Instrumental and vocals file paths
|
143 |
+
to display into gr.Audio()"""
|
144 |
+
self.cache_parameters(model_size=model_name, segment_size=segment_size)
|
145 |
+
|
146 |
+
for file_path in files:
|
147 |
+
instrumental, vocals, file_paths = self.separate(
|
148 |
+
audio=file_path,
|
149 |
+
model_name=model_name,
|
150 |
+
device=device,
|
151 |
+
segment_size=segment_size,
|
152 |
+
save_file=save_file,
|
153 |
+
progress=progress
|
154 |
+
)
|
155 |
+
return file_paths
|
156 |
+
|
157 |
+
@staticmethod
|
158 |
+
def get_device():
|
159 |
+
"""Get device for the model"""
|
160 |
+
return "cuda" if torch.cuda.is_available() else "cpu"
|
161 |
+
|
162 |
+
def offload(self):
|
163 |
+
"""Offload the model and free up the memory"""
|
164 |
+
if self.model is not None:
|
165 |
+
del self.model
|
166 |
+
self.model = None
|
167 |
+
if self.device == "cuda":
|
168 |
+
torch.cuda.empty_cache()
|
169 |
+
gc.collect()
|
170 |
+
self.audio_info = None
|
171 |
+
|
172 |
+
@staticmethod
|
173 |
+
def cache_parameters(model_size: str,
|
174 |
+
segment_size: int):
|
175 |
+
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
176 |
+
cached_uvr_params = cached_params["bgm_separation"]
|
177 |
+
uvr_params_to_cache = {
|
178 |
+
"model_size": model_size,
|
179 |
+
"segment_size": segment_size
|
180 |
+
}
|
181 |
+
cached_uvr_params = {**cached_uvr_params, **uvr_params_to_cache}
|
182 |
+
cached_params["bgm_separation"] = cached_uvr_params
|
183 |
+
save_yaml(cached_params, DEFAULT_PARAMETERS_CONFIG_PATH)
|
modules/whisper/faster_whisper_inference.py
CHANGED
@@ -11,7 +11,7 @@ import whisper
|
|
11 |
import gradio as gr
|
12 |
from argparse import Namespace
|
13 |
|
14 |
-
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR)
|
15 |
from modules.whisper.whisper_parameter import *
|
16 |
from modules.whisper.whisper_base import WhisperBase
|
17 |
|
@@ -20,11 +20,13 @@ class FasterWhisperInference(WhisperBase):
|
|
20 |
def __init__(self,
|
21 |
model_dir: str = FASTER_WHISPER_MODELS_DIR,
|
22 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
|
|
23 |
output_dir: str = OUTPUT_DIR,
|
24 |
):
|
25 |
super().__init__(
|
26 |
model_dir=model_dir,
|
27 |
diarization_model_dir=diarization_model_dir,
|
|
|
28 |
output_dir=output_dir
|
29 |
)
|
30 |
self.model_dir = model_dir
|
|
|
11 |
import gradio as gr
|
12 |
from argparse import Namespace
|
13 |
|
14 |
+
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, UVR_MODELS_DIR, OUTPUT_DIR)
|
15 |
from modules.whisper.whisper_parameter import *
|
16 |
from modules.whisper.whisper_base import WhisperBase
|
17 |
|
|
|
20 |
def __init__(self,
|
21 |
model_dir: str = FASTER_WHISPER_MODELS_DIR,
|
22 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
23 |
+
uvr_model_dir: str = UVR_MODELS_DIR,
|
24 |
output_dir: str = OUTPUT_DIR,
|
25 |
):
|
26 |
super().__init__(
|
27 |
model_dir=model_dir,
|
28 |
diarization_model_dir=diarization_model_dir,
|
29 |
+
uvr_model_dir=uvr_model_dir,
|
30 |
output_dir=output_dir
|
31 |
)
|
32 |
self.model_dir = model_dir
|
modules/whisper/insanely_fast_whisper_inference.py
CHANGED
@@ -11,7 +11,7 @@ import whisper
|
|
11 |
from rich.progress import Progress, TimeElapsedColumn, BarColumn, TextColumn
|
12 |
from argparse import Namespace
|
13 |
|
14 |
-
from modules.utils.paths import (INSANELY_FAST_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR)
|
15 |
from modules.whisper.whisper_parameter import *
|
16 |
from modules.whisper.whisper_base import WhisperBase
|
17 |
|
@@ -20,12 +20,14 @@ class InsanelyFastWhisperInference(WhisperBase):
|
|
20 |
def __init__(self,
|
21 |
model_dir: str = INSANELY_FAST_WHISPER_MODELS_DIR,
|
22 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
|
|
23 |
output_dir: str = OUTPUT_DIR,
|
24 |
):
|
25 |
super().__init__(
|
26 |
model_dir=model_dir,
|
27 |
output_dir=output_dir,
|
28 |
-
diarization_model_dir=diarization_model_dir
|
|
|
29 |
)
|
30 |
self.model_dir = model_dir
|
31 |
os.makedirs(self.model_dir, exist_ok=True)
|
|
|
11 |
from rich.progress import Progress, TimeElapsedColumn, BarColumn, TextColumn
|
12 |
from argparse import Namespace
|
13 |
|
14 |
+
from modules.utils.paths import (INSANELY_FAST_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, UVR_MODELS_DIR, OUTPUT_DIR)
|
15 |
from modules.whisper.whisper_parameter import *
|
16 |
from modules.whisper.whisper_base import WhisperBase
|
17 |
|
|
|
20 |
def __init__(self,
|
21 |
model_dir: str = INSANELY_FAST_WHISPER_MODELS_DIR,
|
22 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
23 |
+
uvr_model_dir: str = UVR_MODELS_DIR,
|
24 |
output_dir: str = OUTPUT_DIR,
|
25 |
):
|
26 |
super().__init__(
|
27 |
model_dir=model_dir,
|
28 |
output_dir=output_dir,
|
29 |
+
diarization_model_dir=diarization_model_dir,
|
30 |
+
uvr_model_dir=uvr_model_dir
|
31 |
)
|
32 |
self.model_dir = model_dir
|
33 |
os.makedirs(self.model_dir, exist_ok=True)
|
modules/whisper/whisper_Inference.py
CHANGED
@@ -7,7 +7,7 @@ import torch
|
|
7 |
import os
|
8 |
from argparse import Namespace
|
9 |
|
10 |
-
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR)
|
11 |
from modules.whisper.whisper_base import WhisperBase
|
12 |
from modules.whisper.whisper_parameter import *
|
13 |
|
@@ -16,12 +16,14 @@ class WhisperInference(WhisperBase):
|
|
16 |
def __init__(self,
|
17 |
model_dir: str = WHISPER_MODELS_DIR,
|
18 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
|
|
19 |
output_dir: str = OUTPUT_DIR,
|
20 |
):
|
21 |
super().__init__(
|
22 |
model_dir=model_dir,
|
23 |
output_dir=output_dir,
|
24 |
-
diarization_model_dir=diarization_model_dir
|
|
|
25 |
)
|
26 |
|
27 |
def transcribe(self,
|
|
|
7 |
import os
|
8 |
from argparse import Namespace
|
9 |
|
10 |
+
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, UVR_MODELS_DIR)
|
11 |
from modules.whisper.whisper_base import WhisperBase
|
12 |
from modules.whisper.whisper_parameter import *
|
13 |
|
|
|
16 |
def __init__(self,
|
17 |
model_dir: str = WHISPER_MODELS_DIR,
|
18 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
19 |
+
uvr_model_dir: str = UVR_MODELS_DIR,
|
20 |
output_dir: str = OUTPUT_DIR,
|
21 |
):
|
22 |
super().__init__(
|
23 |
model_dir=model_dir,
|
24 |
output_dir=output_dir,
|
25 |
+
diarization_model_dir=diarization_model_dir,
|
26 |
+
uvr_model_dir=uvr_model_dir
|
27 |
)
|
28 |
|
29 |
def transcribe(self,
|
modules/whisper/whisper_base.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import torch
|
3 |
import whisper
|
4 |
import gradio as gr
|
|
|
5 |
from abc import ABC, abstractmethod
|
6 |
from typing import BinaryIO, Union, Tuple, List
|
7 |
import numpy as np
|
@@ -9,7 +10,9 @@ from datetime import datetime
|
|
9 |
from faster_whisper.vad import VadOptions
|
10 |
from dataclasses import astuple
|
11 |
|
12 |
-
from modules.
|
|
|
|
|
13 |
from modules.utils.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
14 |
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
|
15 |
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml
|
@@ -22,6 +25,7 @@ class WhisperBase(ABC):
|
|
22 |
def __init__(self,
|
23 |
model_dir: str = WHISPER_MODELS_DIR,
|
24 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
|
|
25 |
output_dir: str = OUTPUT_DIR,
|
26 |
):
|
27 |
self.model_dir = model_dir
|
@@ -32,6 +36,10 @@ class WhisperBase(ABC):
|
|
32 |
model_dir=diarization_model_dir
|
33 |
)
|
34 |
self.vad = SileroVAD()
|
|
|
|
|
|
|
|
|
35 |
|
36 |
self.model = None
|
37 |
self.current_model_size = None
|
@@ -102,7 +110,26 @@ class WhisperBase(ABC):
|
|
102 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
103 |
params.lang = language_code_dict[params.lang]
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
if params.vad_filter:
|
107 |
# Explicit value set for float('inf') from gr.Number()
|
108 |
if params.max_speech_duration_s >= 9999:
|
@@ -224,6 +251,7 @@ class WhisperBase(ABC):
|
|
224 |
def transcribe_mic(self,
|
225 |
mic_audio: str,
|
226 |
file_format: str,
|
|
|
227 |
progress=gr.Progress(),
|
228 |
*whisper_params,
|
229 |
) -> list:
|
@@ -236,6 +264,8 @@ class WhisperBase(ABC):
|
|
236 |
Audio file path from gr.Microphone()
|
237 |
file_format: str
|
238 |
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
|
|
|
|
239 |
progress: gr.Progress
|
240 |
Indicator to show progress directly in gradio.
|
241 |
*whisper_params: tuple
|
@@ -253,6 +283,7 @@ class WhisperBase(ABC):
|
|
253 |
transcribed_segments, time_for_task = self.run(
|
254 |
mic_audio,
|
255 |
progress,
|
|
|
256 |
*whisper_params,
|
257 |
)
|
258 |
progress(1, desc="Completed!")
|
@@ -260,7 +291,7 @@ class WhisperBase(ABC):
|
|
260 |
subtitle, result_file_path = self.generate_and_write_file(
|
261 |
file_name="Mic",
|
262 |
transcribed_segments=transcribed_segments,
|
263 |
-
add_timestamp=
|
264 |
file_format=file_format,
|
265 |
output_dir=self.output_dir
|
266 |
)
|
@@ -427,18 +458,40 @@ class WhisperBase(ABC):
|
|
427 |
if torch.cuda.is_available():
|
428 |
return "cuda"
|
429 |
elif torch.backends.mps.is_available():
|
|
|
|
|
|
|
430 |
return "mps"
|
431 |
else:
|
432 |
return "cpu"
|
433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
@staticmethod
|
435 |
def release_cuda_memory():
|
|
|
436 |
if torch.cuda.is_available():
|
437 |
torch.cuda.empty_cache()
|
438 |
torch.cuda.reset_max_memory_allocated()
|
439 |
|
440 |
@staticmethod
|
441 |
def remove_input_files(file_paths: List[str]):
|
|
|
442 |
if not file_paths:
|
443 |
return
|
444 |
|
@@ -451,9 +504,25 @@ class WhisperBase(ABC):
|
|
451 |
whisper_params: WhisperValues,
|
452 |
add_timestamp: bool
|
453 |
):
|
|
|
454 |
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
455 |
cached_whisper_param = whisper_params.to_yaml()
|
456 |
cached_yaml = {**cached_params, **cached_whisper_param}
|
457 |
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
|
458 |
|
459 |
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import whisper
|
4 |
import gradio as gr
|
5 |
+
import torchaudio
|
6 |
from abc import ABC, abstractmethod
|
7 |
from typing import BinaryIO, Union, Tuple, List
|
8 |
import numpy as np
|
|
|
10 |
from faster_whisper.vad import VadOptions
|
11 |
from dataclasses import astuple
|
12 |
|
13 |
+
from modules.uvr.music_separator import MusicSeparator
|
14 |
+
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
|
15 |
+
UVR_MODELS_DIR)
|
16 |
from modules.utils.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
17 |
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
|
18 |
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml
|
|
|
25 |
def __init__(self,
|
26 |
model_dir: str = WHISPER_MODELS_DIR,
|
27 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
28 |
+
uvr_model_dir: str = UVR_MODELS_DIR,
|
29 |
output_dir: str = OUTPUT_DIR,
|
30 |
):
|
31 |
self.model_dir = model_dir
|
|
|
36 |
model_dir=diarization_model_dir
|
37 |
)
|
38 |
self.vad = SileroVAD()
|
39 |
+
self.music_separator = MusicSeparator(
|
40 |
+
model_dir=uvr_model_dir,
|
41 |
+
output_dir=os.path.join(output_dir, "UVR")
|
42 |
+
)
|
43 |
|
44 |
self.model = None
|
45 |
self.current_model_size = None
|
|
|
110 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
111 |
params.lang = language_code_dict[params.lang]
|
112 |
|
113 |
+
if params.is_bgm_separate:
|
114 |
+
music, audio, _ = self.music_separator.separate(
|
115 |
+
audio=audio,
|
116 |
+
model_name=params.uvr_model_size,
|
117 |
+
device=params.uvr_device,
|
118 |
+
segment_size=params.uvr_segment_size,
|
119 |
+
save_file=params.uvr_save_file,
|
120 |
+
progress=progress
|
121 |
+
)
|
122 |
+
|
123 |
+
if audio.ndim >= 2:
|
124 |
+
audio = audio.mean(axis=1)
|
125 |
+
if self.music_separator.audio_info is None:
|
126 |
+
origin_sample_rate = 16000
|
127 |
+
else:
|
128 |
+
origin_sample_rate = self.music_separator.audio_info.sample_rate
|
129 |
+
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
|
130 |
+
|
131 |
+
self.music_separator.offload()
|
132 |
+
|
133 |
if params.vad_filter:
|
134 |
# Explicit value set for float('inf') from gr.Number()
|
135 |
if params.max_speech_duration_s >= 9999:
|
|
|
251 |
def transcribe_mic(self,
|
252 |
mic_audio: str,
|
253 |
file_format: str,
|
254 |
+
add_timestamp: bool,
|
255 |
progress=gr.Progress(),
|
256 |
*whisper_params,
|
257 |
) -> list:
|
|
|
264 |
Audio file path from gr.Microphone()
|
265 |
file_format: str
|
266 |
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
267 |
+
add_timestamp: bool
|
268 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
269 |
progress: gr.Progress
|
270 |
Indicator to show progress directly in gradio.
|
271 |
*whisper_params: tuple
|
|
|
283 |
transcribed_segments, time_for_task = self.run(
|
284 |
mic_audio,
|
285 |
progress,
|
286 |
+
add_timestamp,
|
287 |
*whisper_params,
|
288 |
)
|
289 |
progress(1, desc="Completed!")
|
|
|
291 |
subtitle, result_file_path = self.generate_and_write_file(
|
292 |
file_name="Mic",
|
293 |
transcribed_segments=transcribed_segments,
|
294 |
+
add_timestamp=add_timestamp,
|
295 |
file_format=file_format,
|
296 |
output_dir=self.output_dir
|
297 |
)
|
|
|
458 |
if torch.cuda.is_available():
|
459 |
return "cuda"
|
460 |
elif torch.backends.mps.is_available():
|
461 |
+
if not WhisperBase.is_sparse_api_supported():
|
462 |
+
# Device `SparseMPS` is not supported for now. See : https://github.com/pytorch/pytorch/issues/87886
|
463 |
+
return "cpu"
|
464 |
return "mps"
|
465 |
else:
|
466 |
return "cpu"
|
467 |
|
468 |
+
@staticmethod
|
469 |
+
def is_sparse_api_supported():
|
470 |
+
if not torch.backends.mps.is_available():
|
471 |
+
return False
|
472 |
+
|
473 |
+
try:
|
474 |
+
device = torch.device("mps")
|
475 |
+
sparse_tensor = torch.sparse_coo_tensor(
|
476 |
+
indices=torch.tensor([[0, 1], [2, 3]]),
|
477 |
+
values=torch.tensor([1, 2]),
|
478 |
+
size=(4, 4),
|
479 |
+
device=device
|
480 |
+
)
|
481 |
+
return True
|
482 |
+
except RuntimeError:
|
483 |
+
return False
|
484 |
+
|
485 |
@staticmethod
|
486 |
def release_cuda_memory():
|
487 |
+
"""Release memory"""
|
488 |
if torch.cuda.is_available():
|
489 |
torch.cuda.empty_cache()
|
490 |
torch.cuda.reset_max_memory_allocated()
|
491 |
|
492 |
@staticmethod
|
493 |
def remove_input_files(file_paths: List[str]):
|
494 |
+
"""Remove gradio cached files"""
|
495 |
if not file_paths:
|
496 |
return
|
497 |
|
|
|
504 |
whisper_params: WhisperValues,
|
505 |
add_timestamp: bool
|
506 |
):
|
507 |
+
"""cache parameters to the yaml file"""
|
508 |
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
509 |
cached_whisper_param = whisper_params.to_yaml()
|
510 |
cached_yaml = {**cached_params, **cached_whisper_param}
|
511 |
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
|
512 |
|
513 |
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
|
514 |
+
|
515 |
+
@staticmethod
|
516 |
+
def resample_audio(audio: Union[str, np.ndarray],
|
517 |
+
new_sample_rate: int = 16000,
|
518 |
+
original_sample_rate: Optional[int] = None,) -> np.ndarray:
|
519 |
+
"""Resamples audio to 16k sample rate, standard on Whisper model"""
|
520 |
+
if isinstance(audio, str):
|
521 |
+
audio, original_sample_rate = torchaudio.load(audio)
|
522 |
+
else:
|
523 |
+
if original_sample_rate is None:
|
524 |
+
raise ValueError("original_sample_rate must be provided when audio is numpy array.")
|
525 |
+
audio = torch.from_numpy(audio)
|
526 |
+
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=new_sample_rate)
|
527 |
+
resampled_audio = resampler(audio).numpy()
|
528 |
+
return resampled_audio
|
modules/whisper/whisper_factory.py
CHANGED
@@ -2,7 +2,7 @@ from typing import Optional
|
|
2 |
import os
|
3 |
|
4 |
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR,
|
5 |
-
INSANELY_FAST_WHISPER_MODELS_DIR, WHISPER_MODELS_DIR)
|
6 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
7 |
from modules.whisper.whisper_Inference import WhisperInference
|
8 |
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
|
@@ -17,6 +17,7 @@ class WhisperFactory:
|
|
17 |
faster_whisper_model_dir: str = FASTER_WHISPER_MODELS_DIR,
|
18 |
insanely_fast_whisper_model_dir: str = INSANELY_FAST_WHISPER_MODELS_DIR,
|
19 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
|
|
20 |
output_dir: str = OUTPUT_DIR,
|
21 |
) -> "WhisperBase":
|
22 |
"""
|
@@ -37,6 +38,8 @@ class WhisperFactory:
|
|
37 |
Directory path for the Insanely Fast Whisper model.
|
38 |
diarization_model_dir : str
|
39 |
Directory path for the diarization model.
|
|
|
|
|
40 |
output_dir : str
|
41 |
Directory path where output files will be saved.
|
42 |
|
@@ -61,23 +64,27 @@ class WhisperFactory:
|
|
61 |
return FasterWhisperInference(
|
62 |
model_dir=faster_whisper_model_dir,
|
63 |
output_dir=output_dir,
|
64 |
-
diarization_model_dir=diarization_model_dir
|
|
|
65 |
)
|
66 |
elif whisper_type in whisper_typos:
|
67 |
return WhisperInference(
|
68 |
model_dir=whisper_model_dir,
|
69 |
output_dir=output_dir,
|
70 |
-
diarization_model_dir=diarization_model_dir
|
|
|
71 |
)
|
72 |
elif whisper_type in insanely_fast_whisper_typos:
|
73 |
return InsanelyFastWhisperInference(
|
74 |
model_dir=insanely_fast_whisper_model_dir,
|
75 |
output_dir=output_dir,
|
76 |
-
diarization_model_dir=diarization_model_dir
|
|
|
77 |
)
|
78 |
else:
|
79 |
return FasterWhisperInference(
|
80 |
model_dir=faster_whisper_model_dir,
|
81 |
output_dir=output_dir,
|
82 |
-
diarization_model_dir=diarization_model_dir
|
|
|
83 |
)
|
|
|
2 |
import os
|
3 |
|
4 |
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR,
|
5 |
+
INSANELY_FAST_WHISPER_MODELS_DIR, WHISPER_MODELS_DIR, UVR_MODELS_DIR)
|
6 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
7 |
from modules.whisper.whisper_Inference import WhisperInference
|
8 |
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
|
|
|
17 |
faster_whisper_model_dir: str = FASTER_WHISPER_MODELS_DIR,
|
18 |
insanely_fast_whisper_model_dir: str = INSANELY_FAST_WHISPER_MODELS_DIR,
|
19 |
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
20 |
+
uvr_model_dir: str = UVR_MODELS_DIR,
|
21 |
output_dir: str = OUTPUT_DIR,
|
22 |
) -> "WhisperBase":
|
23 |
"""
|
|
|
38 |
Directory path for the Insanely Fast Whisper model.
|
39 |
diarization_model_dir : str
|
40 |
Directory path for the diarization model.
|
41 |
+
uvr_model_dir : str
|
42 |
+
Directory path for the UVR model.
|
43 |
output_dir : str
|
44 |
Directory path where output files will be saved.
|
45 |
|
|
|
64 |
return FasterWhisperInference(
|
65 |
model_dir=faster_whisper_model_dir,
|
66 |
output_dir=output_dir,
|
67 |
+
diarization_model_dir=diarization_model_dir,
|
68 |
+
uvr_model_dir=uvr_model_dir
|
69 |
)
|
70 |
elif whisper_type in whisper_typos:
|
71 |
return WhisperInference(
|
72 |
model_dir=whisper_model_dir,
|
73 |
output_dir=output_dir,
|
74 |
+
diarization_model_dir=diarization_model_dir,
|
75 |
+
uvr_model_dir=uvr_model_dir
|
76 |
)
|
77 |
elif whisper_type in insanely_fast_whisper_typos:
|
78 |
return InsanelyFastWhisperInference(
|
79 |
model_dir=insanely_fast_whisper_model_dir,
|
80 |
output_dir=output_dir,
|
81 |
+
diarization_model_dir=diarization_model_dir,
|
82 |
+
uvr_model_dir=uvr_model_dir
|
83 |
)
|
84 |
else:
|
85 |
return FasterWhisperInference(
|
86 |
model_dir=faster_whisper_model_dir,
|
87 |
output_dir=output_dir,
|
88 |
+
diarization_model_dir=diarization_model_dir,
|
89 |
+
uvr_model_dir=uvr_model_dir
|
90 |
)
|
modules/whisper/whisper_parameter.py
CHANGED
@@ -47,6 +47,11 @@ class WhisperParameters:
|
|
47 |
hotwords: gr.Textbox
|
48 |
language_detection_threshold: gr.Number
|
49 |
language_detection_segments: gr.Number
|
|
|
|
|
|
|
|
|
|
|
50 |
"""
|
51 |
A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing.
|
52 |
This data class is used to mitigate the key-value problem between Gradio components and function parameters.
|
@@ -148,61 +153,76 @@ class WhisperParameters:
|
|
148 |
diarization_device: gr.Dropdown
|
149 |
This parameter is related with whisperx. Device to run diarization model
|
150 |
|
151 |
-
length_penalty:
|
152 |
This parameter is related to faster-whisper. Exponential length penalty constant.
|
153 |
|
154 |
-
repetition_penalty:
|
155 |
This parameter is related to faster-whisper. Penalty applied to the score of previously generated tokens
|
156 |
(set > 1 to penalize).
|
157 |
|
158 |
-
no_repeat_ngram_size:
|
159 |
This parameter is related to faster-whisper. Prevent repetitions of n-grams with this size (set 0 to disable).
|
160 |
|
161 |
-
prefix:
|
162 |
This parameter is related to faster-whisper. Optional text to provide as a prefix for the first window.
|
163 |
|
164 |
-
suppress_blank:
|
165 |
This parameter is related to faster-whisper. Suppress blank outputs at the beginning of the sampling.
|
166 |
|
167 |
-
suppress_tokens:
|
168 |
This parameter is related to faster-whisper. List of token IDs to suppress. -1 will suppress a default set
|
169 |
of symbols as defined in the model config.json file.
|
170 |
|
171 |
-
max_initial_timestamp:
|
172 |
This parameter is related to faster-whisper. The initial timestamp cannot be later than this.
|
173 |
|
174 |
-
word_timestamps:
|
175 |
This parameter is related to faster-whisper. Extract word-level timestamps using the cross-attention pattern
|
176 |
and dynamic time warping, and include the timestamps for each word in each segment.
|
177 |
|
178 |
-
prepend_punctuations:
|
179 |
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols
|
180 |
with the next word.
|
181 |
|
182 |
-
append_punctuations:
|
183 |
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols
|
184 |
with the previous word.
|
185 |
|
186 |
-
max_new_tokens:
|
187 |
This parameter is related to faster-whisper. Maximum number of new tokens to generate per-chunk. If not set,
|
188 |
the maximum will be set by the default max_length.
|
189 |
|
190 |
-
chunk_length:
|
191 |
This parameter is related to faster-whisper. The length of audio segments. If it is not None, it will overwrite the
|
192 |
default chunk_length of the FeatureExtractor.
|
193 |
|
194 |
-
hallucination_silence_threshold:
|
195 |
This parameter is related to faster-whisper. When word_timestamps is True, skip silent periods longer than this threshold
|
196 |
(in seconds) when a possible hallucination is detected.
|
197 |
|
198 |
-
hotwords:
|
199 |
This parameter is related to faster-whisper. Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.
|
200 |
|
201 |
-
language_detection_threshold:
|
202 |
This parameter is related to faster-whisper. If the maximum probability of the language tokens is higher than this value, the language is detected.
|
203 |
|
204 |
-
language_detection_segments:
|
205 |
This parameter is related to faster-whisper. Number of segments to consider for the language detection.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
"""
|
207 |
|
208 |
def as_list(self) -> list:
|
@@ -273,6 +293,11 @@ class WhisperValues:
|
|
273 |
hotwords: Optional[str]
|
274 |
language_detection_threshold: Optional[float]
|
275 |
language_detection_segments: int
|
|
|
|
|
|
|
|
|
|
|
276 |
"""
|
277 |
A data class to use Whisper parameters.
|
278 |
"""
|
@@ -323,6 +348,12 @@ class WhisperValues:
|
|
323 |
"diarization": {
|
324 |
"is_diarize": self.is_diarize,
|
325 |
"hf_token": self.hf_token
|
326 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
}
|
328 |
return data
|
|
|
47 |
hotwords: gr.Textbox
|
48 |
language_detection_threshold: gr.Number
|
49 |
language_detection_segments: gr.Number
|
50 |
+
is_bgm_separate: gr.Checkbox
|
51 |
+
uvr_model_size: gr.Dropdown
|
52 |
+
uvr_device: gr.Dropdown
|
53 |
+
uvr_segment_size: gr.Number
|
54 |
+
uvr_save_file: gr.Checkbox
|
55 |
"""
|
56 |
A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing.
|
57 |
This data class is used to mitigate the key-value problem between Gradio components and function parameters.
|
|
|
153 |
diarization_device: gr.Dropdown
|
154 |
This parameter is related with whisperx. Device to run diarization model
|
155 |
|
156 |
+
length_penalty: gr.Number
|
157 |
This parameter is related to faster-whisper. Exponential length penalty constant.
|
158 |
|
159 |
+
repetition_penalty: gr.Number
|
160 |
This parameter is related to faster-whisper. Penalty applied to the score of previously generated tokens
|
161 |
(set > 1 to penalize).
|
162 |
|
163 |
+
no_repeat_ngram_size: gr.Number
|
164 |
This parameter is related to faster-whisper. Prevent repetitions of n-grams with this size (set 0 to disable).
|
165 |
|
166 |
+
prefix: gr.Textbox
|
167 |
This parameter is related to faster-whisper. Optional text to provide as a prefix for the first window.
|
168 |
|
169 |
+
suppress_blank: gr.Checkbox
|
170 |
This parameter is related to faster-whisper. Suppress blank outputs at the beginning of the sampling.
|
171 |
|
172 |
+
suppress_tokens: gr.Textbox
|
173 |
This parameter is related to faster-whisper. List of token IDs to suppress. -1 will suppress a default set
|
174 |
of symbols as defined in the model config.json file.
|
175 |
|
176 |
+
max_initial_timestamp: gr.Number
|
177 |
This parameter is related to faster-whisper. The initial timestamp cannot be later than this.
|
178 |
|
179 |
+
word_timestamps: gr.Checkbox
|
180 |
This parameter is related to faster-whisper. Extract word-level timestamps using the cross-attention pattern
|
181 |
and dynamic time warping, and include the timestamps for each word in each segment.
|
182 |
|
183 |
+
prepend_punctuations: gr.Textbox
|
184 |
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols
|
185 |
with the next word.
|
186 |
|
187 |
+
append_punctuations: gr.Textbox
|
188 |
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols
|
189 |
with the previous word.
|
190 |
|
191 |
+
max_new_tokens: gr.Number
|
192 |
This parameter is related to faster-whisper. Maximum number of new tokens to generate per-chunk. If not set,
|
193 |
the maximum will be set by the default max_length.
|
194 |
|
195 |
+
chunk_length: gr.Number
|
196 |
This parameter is related to faster-whisper. The length of audio segments. If it is not None, it will overwrite the
|
197 |
default chunk_length of the FeatureExtractor.
|
198 |
|
199 |
+
hallucination_silence_threshold: gr.Number
|
200 |
This parameter is related to faster-whisper. When word_timestamps is True, skip silent periods longer than this threshold
|
201 |
(in seconds) when a possible hallucination is detected.
|
202 |
|
203 |
+
hotwords: gr.Textbox
|
204 |
This parameter is related to faster-whisper. Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.
|
205 |
|
206 |
+
language_detection_threshold: gr.Number
|
207 |
This parameter is related to faster-whisper. If the maximum probability of the language tokens is higher than this value, the language is detected.
|
208 |
|
209 |
+
language_detection_segments: gr.Number
|
210 |
This parameter is related to faster-whisper. Number of segments to consider for the language detection.
|
211 |
+
|
212 |
+
is_separate_bgm: gr.Checkbox
|
213 |
+
This parameter is related to UVR. Boolean value that determines whether to separate bgm or not.
|
214 |
+
|
215 |
+
uvr_model_size: gr.Dropdown
|
216 |
+
This parameter is related to UVR. UVR model size.
|
217 |
+
|
218 |
+
uvr_device: gr.Dropdown
|
219 |
+
This parameter is related to UVR. Device to run UVR model.
|
220 |
+
|
221 |
+
uvr_segment_size: gr.Number
|
222 |
+
This parameter is related to UVR. Segment size for UVR model.
|
223 |
+
|
224 |
+
uvr_save_file: gr.Checkbox
|
225 |
+
This parameter is related to UVR. Boolean value that determines whether to save the file or not.
|
226 |
"""
|
227 |
|
228 |
def as_list(self) -> list:
|
|
|
293 |
hotwords: Optional[str]
|
294 |
language_detection_threshold: Optional[float]
|
295 |
language_detection_segments: int
|
296 |
+
is_bgm_separate: bool
|
297 |
+
uvr_model_size: str
|
298 |
+
uvr_device: str
|
299 |
+
uvr_segment_size: int
|
300 |
+
uvr_save_file: bool
|
301 |
"""
|
302 |
A data class to use Whisper parameters.
|
303 |
"""
|
|
|
348 |
"diarization": {
|
349 |
"is_diarize": self.is_diarize,
|
350 |
"hf_token": self.hf_token
|
351 |
+
},
|
352 |
+
"bgm_separation": {
|
353 |
+
"is_separate_bgm": self.is_bgm_separate,
|
354 |
+
"model_size": self.uvr_model_size,
|
355 |
+
"segment_size": self.uvr_segment_size,
|
356 |
+
"save_file": self.uvr_save_file,
|
357 |
+
},
|
358 |
}
|
359 |
return data
|
notebook/whisper-webui.ipynb
CHANGED
@@ -58,7 +58,8 @@
|
|
58 |
"# Temporal bug fix from https://github.com/jhj0517/Whisper-WebUI/issues/256\n",
|
59 |
"!pip install git+https://github.com/JuanBindez/pytubefix.git\n",
|
60 |
"!pip install tokenizers==0.19.1\n",
|
61 |
-
"!pip install pyannote.audio==3.3.1"
|
|
|
62 |
]
|
63 |
},
|
64 |
{
|
@@ -96,7 +97,7 @@
|
|
96 |
},
|
97 |
{
|
98 |
"cell_type": "code",
|
99 |
-
"execution_count":
|
100 |
"metadata": {
|
101 |
"id": "PQroYRRZzQiN",
|
102 |
"cellView": "form"
|
|
|
58 |
"# Temporal bug fix from https://github.com/jhj0517/Whisper-WebUI/issues/256\n",
|
59 |
"!pip install git+https://github.com/JuanBindez/pytubefix.git\n",
|
60 |
"!pip install tokenizers==0.19.1\n",
|
61 |
+
"!pip install pyannote.audio==3.3.1\n",
|
62 |
+
"!pip install git+https://github.com/jhj0517/ultimatevocalremover_api.git"
|
63 |
]
|
64 |
},
|
65 |
{
|
|
|
97 |
},
|
98 |
{
|
99 |
"cell_type": "code",
|
100 |
+
"execution_count": 3,
|
101 |
"metadata": {
|
102 |
"id": "PQroYRRZzQiN",
|
103 |
"cellView": "form"
|
requirements.txt
CHANGED
@@ -12,4 +12,6 @@ transformers==4.42.3
|
|
12 |
gradio==4.43.0
|
13 |
pytubefix
|
14 |
ruamel.yaml==0.18.6
|
15 |
-
pyannote.audio==3.3.1
|
|
|
|
|
|
12 |
gradio==4.43.0
|
13 |
pytubefix
|
14 |
ruamel.yaml==0.18.6
|
15 |
+
pyannote.audio==3.3.1
|
16 |
+
git+https://github.com/jhj0517/ultimatevocalremover_api.git
|
17 |
+
git+https://github.com/jhj0517/pyrubberband.git
|