Create audio_processing.py, include module for language detection, modifying sampling rate and processing audios longer than 30 seconds
Browse files- audio_processing.py +48 -0
audio_processing.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import whisper
|
3 |
+
import torchaudio as ta
|
4 |
+
from model_utils import get_processor, get_model, get_whisper_model_small, get_device
|
5 |
+
from config import SAMPLING_RATE, CHUNK_LENGTH_S
|
6 |
+
|
7 |
+
def detect_language(audio_file):
|
8 |
+
whisper_model = get_whisper_model_small()
|
9 |
+
trimmed_audio = whisper.pad_or_trim(audio_file.squeeze())
|
10 |
+
mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device)
|
11 |
+
_, probs = whisper_model.detect_language(mel)
|
12 |
+
detected_lang = max(probs[0], key=probs[0].get)
|
13 |
+
print(f"Detected language: {detected_lang}")
|
14 |
+
return detected_lang
|
15 |
+
|
16 |
+
def process_long_audio(waveform, sampling_rate, task="transcribe", language=None):
|
17 |
+
processor = get_processor()
|
18 |
+
model = get_model()
|
19 |
+
device = get_device()
|
20 |
+
|
21 |
+
input_length = waveform.shape[1]
|
22 |
+
chunk_length = int(CHUNK_LENGTH_S * sampling_rate)
|
23 |
+
chunks = [waveform[:, i:i + chunk_length] for i in range(0, input_length, chunk_length)]
|
24 |
+
|
25 |
+
results = []
|
26 |
+
for chunk in chunks:
|
27 |
+
input_features = processor(chunk[0], sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
if task == "translate":
|
31 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
|
32 |
+
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
33 |
+
else:
|
34 |
+
generated_ids = model.generate(input_features)
|
35 |
+
|
36 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
37 |
+
results.extend(transcription)
|
38 |
+
|
39 |
+
# Clear GPU cache
|
40 |
+
torch.cuda.empty_cache()
|
41 |
+
|
42 |
+
return " ".join(results)
|
43 |
+
|
44 |
+
def load_and_resample_audio(file):
|
45 |
+
waveform, sampling_rate = ta.load(file)
|
46 |
+
if sampling_rate != SAMPLING_RATE:
|
47 |
+
waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
|
48 |
+
return waveform
|