import torch | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import whisper | |
from config import WHISPER_MODEL_SIZE | |
# Global variables to store models | |
whisper_processor = None | |
whisper_model = None | |
whisper_model_small = None | |
def load_models(): | |
global whisper_processor, whisper_model, whisper_model_small | |
if whisper_processor is None: | |
whisper_processor = WhisperProcessor.from_pretrained(f"openai/whisper-{WHISPER_MODEL_SIZE}") | |
if whisper_model is None: | |
whisper_model = WhisperForConditionalGeneration.from_pretrained(f"openai/whisper-{WHISPER_MODEL_SIZE}").to(get_device()) | |
if whisper_model_small is None: | |
whisper_model_small = whisper.load_model(WHISPER_MODEL_SIZE) | |
def get_device(): | |
return "cuda:0" if torch.cuda.is_available() else "cpu" | |
def get_processor(): | |
global whisper_processor | |
if whisper_processor is None: | |
load_models() | |
return whisper_processor | |
def get_model(): | |
global whisper_model | |
if whisper_model is None: | |
load_models() | |
return whisper_model | |
def get_whisper_model_small(): | |
global whisper_model_small | |
if whisper_model_small is None: | |
load_models() | |
return whisper_model_small |