ASRfr / chunkedTranscriber.py
Kr08's picture
Update chunkedTranscriber.py
06d1cd1 verified
raw
history blame
14.4 kB
import os
import gc
import sys
import time
import torch
import spaces
import torchaudio
import numpy as np
from scipy.signal import resample
from pyannote.audio import Pipeline
from dotenv import load_dotenv
load_dotenv()
from difflib import SequenceMatcher
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor, Wav2Vec2ForCTC, AutoProcessor, AutoTokenizer, AutoModelForSeq2SeqLM
from difflib import SequenceMatcher
class ChunkedTranscriber:
def __init__(self, chunk_size=5, overlap=1, sample_rate=16000):
self.chunk_size = chunk_size
self.overlap = overlap
self.sample_rate = sample_rate
self.previous_text = ""
self.previous_lang = None
self.speaker_diarization_pipeline = self.load_speaker_diarization_pipeline()
def load_speaker_diarization_pipeline(self):
"""
Load the pre-trained speaker diarization pipeline from pyannote-audio.
"""
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.getenv("HF_TOKEN"))
return pipeline
@spaces.GPU(duration=60)
def diarize_audio(self, audio_path):
"""
Perform speaker diarization on the input audio.
"""
diarization_result = self.speaker_diarization_pipeline({"uri": "audio", "audio": audio_path})
return diarization_result
def load_lid_mms(self):
model_id = "facebook/mms-lid-256"
processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
return processor, model
@spaces.GPU(duration=60)
def language_identification(self, model, processor, chunk, device="cuda"):
inputs = processor(chunk, sampling_rate=16_000, return_tensors="pt")
model.to(device)
inputs.to(device)
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
del model
del inputs
torch.cuda.empty_cache()
gc.collect()
return detected_lang
def load_mms(self) :
model_id = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
return model, processor
@spaces.GPU(duration=60)
def mms_transcription(self, model, processor, chunk, device="cuda"):
inputs = processor(chunk, sampling_rate=16_000, return_tensors="pt")
model.to(device)
inputs.to(device)
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
del model
del inputs
torch.cuda.empty_cache()
gc.collect()
return transcription
def load_T2T_translation_model(self) :
model_id = "facebook/nllb-200-distilled-600M"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
return model, tokenizer
@spaces.GPU(duration=60)
def text2text_translation(self, translation_model, translation_tokenizer, transcript, device="cuda"):
# model, tokenizer = load_translation_model()
tokenized_inputs = translation_tokenizer(transcript, return_tensors='pt')
translation_model.to(device)
tokenized_inputs.to(device)
translated_tokens = translation_model.generate(**tokenized_inputs,
forced_bos_token_id=translation_tokenizer.convert_tokens_to_ids("eng_Latn"),
max_length=100)
del translation_model
del tokenized_inputs
torch.cuda.empty_cache()
gc.collect()
return translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
def preprocess_audio(self, audio):
"""
Create overlapping chunks with improved timing logic
"""
chunk_samples = int(self.chunk_size * self.sample_rate)
overlap_samples = int(self.overlap * self.sample_rate)
chunks_with_times = []
start_idx = 0
while start_idx < len(audio):
end_idx = min(start_idx + chunk_samples, len(audio))
# Add padding for first chunk
if start_idx == 0:
chunk = audio[start_idx:end_idx]
padding = torch.zeros(int(1 * self.sample_rate))
chunk = torch.cat([padding, chunk])
else:
# Include overlap from previous chunk
actual_start = max(0, start_idx - overlap_samples)
chunk = audio[actual_start:end_idx]
# Pad if necessary
if len(chunk) < chunk_samples:
chunk = torch.nn.functional.pad(chunk, (0, chunk_samples - len(chunk)))
# Adjust time ranges to account for overlaps
chunk_start_time = max(0, (start_idx / self.sample_rate) - self.overlap)
chunk_end_time = min((end_idx / self.sample_rate) + self.overlap, len(audio) / self.sample_rate)
chunks_with_times.append({
'chunk': chunk,
'start_time': start_idx / self.sample_rate,
'end_time': end_idx / self.sample_rate,
'transcribe_start': chunk_start_time,
'transcribe_end': chunk_end_time
})
# Move to next chunk with smaller step size for better continuity
start_idx += (chunk_samples - overlap_samples)
return chunks_with_times
def merge_close_segments(self, results):
"""
Merge segments that are close in time and have the same language
"""
if not results:
return results
merged = []
current = results[0]
for next_segment in results[1:]:
# Skip empty segments
if not next_segment['text'].strip():
continue
# If segments are in the same language and close in time
if (current['detected_language'] == next_segment['detected_language'] and
abs(next_segment['start_time'] - current['end_time']) <= self.overlap):
# Merge the segments
current['text'] = current['text'] + ' ' + next_segment['text']
current['end_time'] = next_segment['end_time']
if 'translated' in current and 'translated' in next_segment:
current['translated'] = current['translated'] + ' ' + next_segment['translated']
else:
if current['text'].strip(): # Only add non-empty segments
merged.append(current)
current = next_segment
if current['text'].strip(): # Add the last segment if non-empty
merged.append(current)
return merged
def clean_overlapping_text(self, current_text, prev_text, current_lang, prev_lang, min_overlap=3):
"""
Improved text cleaning with language awareness and better sentence boundary handling
"""
if not prev_text or not current_text:
return current_text
# If languages are different, don't try to merge
if prev_lang and current_lang and prev_lang != current_lang:
return current_text
# Split into words
prev_words = prev_text.split()
curr_words = current_text.split()
if len(prev_words) < 2 or len(curr_words) < 2:
return current_text
# Find matching sequences at the end of prev_text and start of current_text
matcher = SequenceMatcher(None, prev_words, curr_words)
matches = list(matcher.get_matching_blocks())
# Look for significant overlaps
best_overlap = 0
overlap_size = 0
for match in matches:
# Check if the match is at the start of current text
if match.b == 0 and match.size >= min_overlap:
if match.size > overlap_size:
best_overlap = match.size
overlap_size = match.size
if best_overlap > 0:
# Remove overlapping content while preserving sentence integrity
cleaned_words = curr_words[best_overlap:]
if not cleaned_words: # If everything was overlapping
return ""
return ' '.join(cleaned_words).strip()
return current_text
def process_chunk(self, chunk_data, mms_model, mms_processor, translation_model=None, translation_tokenizer=None):
"""
Process chunk with improved language handling
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
print(f"\n\n Chunk shape: {chunk_data['chunk'].shape}")
# Language detection
lid_processor, lid_model = self.load_lid_mms()
lid_lang = self.language_identification(lid_model, lid_processor, chunk_data['chunk'])
# Configure processor
mms_processor.tokenizer.set_target_lang(lid_lang)
mms_model.load_adapter(lid_lang)
# Transcribe
inputs = mms_processor(chunk_data['chunk'], sampling_rate=self.sample_rate, return_tensors="pt")
inputs = inputs.to(device)
mms_model = mms_model.to(device)
with torch.no_grad():
outputs = mms_model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = mms_processor.decode(ids)
# Clean overlapping text with language awareness
cleaned_transcription = self.clean_overlapping_text(
transcription,
self.previous_text,
lid_lang,
self.previous_lang,
min_overlap=3
)
# Update previous state
self.previous_text = transcription
self.previous_lang = lid_lang
if not cleaned_transcription.strip():
return None
result = {
'start_time': chunk_data['start_time'],
'end_time': chunk_data['end_time'],
'text': cleaned_transcription,
'detected_language': lid_lang
}
# Handle translation
if translation_model and translation_tokenizer and cleaned_transcription.strip():
translation = self.text2text_translation(
translation_model,
translation_tokenizer,
cleaned_transcription
)
result['translated'] = translation
return result
except Exception as e:
print(f"Error processing chunk: {str(e)}")
return None
finally:
torch.cuda.empty_cache()
gc.collect()
def translate_text(self, text, translation_model, translation_tokenizer, device):
"""
Translate cleaned text using the provided translation model.
"""
tokenized_inputs = translation_tokenizer(text, return_tensors='pt')
tokenized_inputs = tokenized_inputs.to(device)
translation_model = translation_model.to(device)
translated_tokens = translation_model.generate(
**tokenized_inputs,
forced_bos_token_id=translation_tokenizer.convert_tokens_to_ids("eng_Latn"),
max_length=100
)
translation = translation_tokenizer.batch_decode(
translated_tokens,
skip_special_tokens=True
)[0]
del translation_model
del tokenized_inputs
torch.cuda.empty_cache()
gc.collect()
return translation
def transcribe_audio(self, audio_path, translate=False):
"""
Main transcription function with improved segment merging
"""
# Perform speaker diarization
diarization_result = self.diarize_audio(audio_path)
# Extract speaker segments
speaker_segments = []
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
speaker_segments.append({
'start_time': turn.start,
'end_time': turn.end,
'speaker': speaker
})
# print(f"\n\n Speaker Segments:\n{speaker_segments}\n")
audio = self.load_audio(audio_path)
chunks = self.preprocess_audio(audio)
mms_model, mms_processor = self.load_mms()
translation_model, translation_tokenizer = None, None
if translate:
translation_model, translation_tokenizer = self.load_T2T_translation_model()
# Process chunks
results = []
for chunk_data in chunks:
result = self.process_chunk(
chunk_data,
mms_model,
mms_processor,
translation_model,
translation_tokenizer
)
print(f"\n\nResult:\n{result}")
if result:
for segment in speaker_segments:
if int(segment['start_time']) <= int(chunk_data['start_time']) < int(segment['end_time']):
result['speaker'] = segment['speaker']
break
results.append(result)
# results.append(result)
# Merge close segments and clean up
merged_results = self.merge_close_segments(results)
return merged_results
def load_audio(self, audio_path):
"""
Load and preprocess audio file.
"""
waveform, sample_rate = torchaudio.load(audio_path)
# Convert to mono if stereo
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0)
else:
waveform = waveform.squeeze(0)
# Resample if necessary
if sample_rate != self.sample_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=sample_rate,
new_freq=self.sample_rate
)
waveform = resampler(waveform)
return waveform.float()