File size: 14,805 Bytes
5b5fc60 7a158c9 5b5fc60 1be1917 5b5fc60 06d1cd1 5b5fc60 7a158c9 5b5fc60 7a158c9 5b5fc60 7a158c9 5b5fc60 7a158c9 5b5fc60 7a158c9 5b5fc60 5812712 5b5fc60 5812712 8b8612b 5812712 18d9f31 5b5fc60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import os
import gc
import sys
import time
import torch
import spaces
import torchaudio
import numpy as np
from scipy.signal import resample
from pyannote.audio import Pipeline
from dotenv import load_dotenv
load_dotenv()
from difflib import SequenceMatcher
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor, Wav2Vec2ForCTC, AutoProcessor, AutoTokenizer, AutoModelForSeq2SeqLM
from difflib import SequenceMatcher
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
class ChunkedTranscriber:
def __init__(self, chunk_size=5, overlap=1, sample_rate=16000):
self.chunk_size = chunk_size
self.overlap = overlap
self.sample_rate = sample_rate
self.previous_text = ""
self.previous_lang = None
self.speaker_diarization_pipeline = self.load_speaker_diarization_pipeline()
def load_speaker_diarization_pipeline(self):
"""
Load the pre-trained speaker diarization pipeline from pyannote-audio.
"""
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.getenv("HF_TOKEN"))
return pipeline
@spaces.GPU(duration=60)
def diarize_audio(self, audio_path):
"""
Perform speaker diarization on the input audio.
"""
diarization_result = self.speaker_diarization_pipeline({"uri": "audio", "audio": audio_path})
return diarization_result
def load_lid_mms(self):
model_id = "facebook/mms-lid-256"
processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
return processor, model
@spaces.GPU(duration=60)
def language_identification(self, model, processor, chunk, device="cuda"):
inputs = processor(chunk, sampling_rate=16_000, return_tensors="pt")
model.to(device)
inputs.to(device)
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
del model
del inputs
torch.cuda.empty_cache()
gc.collect()
return detected_lang
def load_mms(self) :
model_id = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
return model, processor
@spaces.GPU(duration=60)
def mms_transcription(self, model, processor, chunk, device="cuda"):
inputs = processor(chunk, sampling_rate=16_000, return_tensors="pt")
model.to(device)
inputs.to(device)
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
del model
del inputs
torch.cuda.empty_cache()
gc.collect()
return transcription
def load_T2T_translation_model(self) :
model_id = "facebook/nllb-200-distilled-600M"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
return model, tokenizer
@spaces.GPU(duration=60)
def text2text_translation(self, translation_model, translation_tokenizer, transcript, device="cuda"):
# model, tokenizer = load_translation_model()
tokenized_inputs = translation_tokenizer(transcript, return_tensors='pt')
translation_model.to(device)
tokenized_inputs.to(device)
translated_tokens = translation_model.generate(**tokenized_inputs,
forced_bos_token_id=translation_tokenizer.convert_tokens_to_ids("eng_Latn"),
max_length=100)
del translation_model
del tokenized_inputs
torch.cuda.empty_cache()
gc.collect()
return translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
def preprocess_audio(self, audio):
"""
Create overlapping chunks with improved timing logic
"""
chunk_samples = int(self.chunk_size * self.sample_rate)
overlap_samples = int(self.overlap * self.sample_rate)
chunks_with_times = []
start_idx = 0
while start_idx < len(audio):
end_idx = min(start_idx + chunk_samples, len(audio))
# Add padding for first chunk
if start_idx == 0:
chunk = audio[start_idx:end_idx]
padding = torch.zeros(int(1 * self.sample_rate))
chunk = torch.cat([padding, chunk])
else:
# Include overlap from previous chunk
actual_start = max(0, start_idx - overlap_samples)
chunk = audio[actual_start:end_idx]
# Pad if necessary
if len(chunk) < chunk_samples:
chunk = torch.nn.functional.pad(chunk, (0, chunk_samples - len(chunk)))
# Adjust time ranges to account for overlaps
chunk_start_time = max(0, (start_idx / self.sample_rate) - self.overlap)
chunk_end_time = min((end_idx / self.sample_rate) + self.overlap, len(audio) / self.sample_rate)
chunks_with_times.append({
'chunk': chunk,
'start_time': start_idx / self.sample_rate,
'end_time': end_idx / self.sample_rate,
'transcribe_start': chunk_start_time,
'transcribe_end': chunk_end_time
})
# Move to next chunk with smaller step size for better continuity
start_idx += (chunk_samples - overlap_samples)
return chunks_with_times
def merge_close_segments(self, results):
"""
Merge segments that are close in time and have the same language
"""
if not results:
return results
merged = []
current = results[0]
for next_segment in results[1:]:
# Skip empty segments
if not next_segment['text'].strip():
continue
# If segments are in the same language and close in time
if (current['detected_language'] == next_segment['detected_language'] and
abs(next_segment['start_time'] - current['end_time']) <= self.overlap):
# Merge the segments
current['text'] = current['text'] + ' ' + next_segment['text']
current['end_time'] = next_segment['end_time']
if 'translated' in current and 'translated' in next_segment:
current['translated'] = current['translated'] + ' ' + next_segment['translated']
else:
if current['text'].strip(): # Only add non-empty segments
merged.append(current)
current = next_segment
if current['text'].strip(): # Add the last segment if non-empty
merged.append(current)
return merged
def clean_overlapping_text(self, current_text, prev_text, current_lang, prev_lang, min_overlap=3):
"""
Improved text cleaning with language awareness and better sentence boundary handling
"""
if not prev_text or not current_text:
return current_text
# If languages are different, don't try to merge
if prev_lang and current_lang and prev_lang != current_lang:
return current_text
# Split into words
prev_words = prev_text.split()
curr_words = current_text.split()
if len(prev_words) < 2 or len(curr_words) < 2:
return current_text
# Find matching sequences at the end of prev_text and start of current_text
matcher = SequenceMatcher(None, prev_words, curr_words)
matches = list(matcher.get_matching_blocks())
# Look for significant overlaps
best_overlap = 0
overlap_size = 0
for match in matches:
# Check if the match is at the start of current text
if match.b == 0 and match.size >= min_overlap:
if match.size > overlap_size:
best_overlap = match.size
overlap_size = match.size
if best_overlap > 0:
# Remove overlapping content while preserving sentence integrity
cleaned_words = curr_words[best_overlap:]
if not cleaned_words: # If everything was overlapping
return ""
return ' '.join(cleaned_words).strip()
return current_text
def process_chunk(self, chunk_data, mms_model, mms_processor, translation_model=None, translation_tokenizer=None):
"""
Process chunk with improved language handling
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
# Language detection
lid_processor, lid_model = self.load_lid_mms()
lid_lang = self.language_identification(lid_model, lid_processor, chunk_data['chunk'])
# Configure processor
mms_processor.tokenizer.set_target_lang(lid_lang)
mms_model.load_adapter(lid_lang)
# Transcribe
inputs = mms_processor(chunk_data['chunk'], sampling_rate=self.sample_rate, return_tensors="pt")
inputs = inputs.to(device)
mms_model = mms_model.to(device)
with torch.no_grad():
outputs = mms_model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = mms_processor.decode(ids)
# Clean overlapping text with language awareness
cleaned_transcription = self.clean_overlapping_text(
transcription,
self.previous_text,
lid_lang,
self.previous_lang,
min_overlap=3
)
# Update previous state
self.previous_text = transcription
self.previous_lang = lid_lang
if not cleaned_transcription.strip():
return None
result = {
'start_time': chunk_data['start_time'],
'end_time': chunk_data['end_time'],
'text': cleaned_transcription,
'detected_language': lid_lang
}
# Handle translation
if translation_model and translation_tokenizer and cleaned_transcription.strip():
translation = self.text2text_translation(
translation_model,
translation_tokenizer,
cleaned_transcription
)
result['translated'] = translation
return result
except Exception as e:
print(f"Error processing chunk: {str(e)}")
return None
finally:
torch.cuda.empty_cache()
gc.collect()
def translate_text(self, text, translation_model, translation_tokenizer, device):
"""
Translate cleaned text using the provided translation model.
"""
tokenized_inputs = translation_tokenizer(text, return_tensors='pt')
tokenized_inputs = tokenized_inputs.to(device)
translation_model = translation_model.to(device)
translated_tokens = translation_model.generate(
**tokenized_inputs,
forced_bos_token_id=translation_tokenizer.convert_tokens_to_ids("eng_Latn"),
max_length=100
)
translation = translation_tokenizer.batch_decode(
translated_tokens,
skip_special_tokens=True
)[0]
del translation_model
del tokenized_inputs
torch.cuda.empty_cache()
gc.collect()
return translation
def transcribe_audio(self, audio_path, translate=False):
"""
Main transcription function with improved segment merging
"""
# Perform speaker diarization
diarization_result = self.diarize_audio(audio_path)
# Extract speaker segments
speaker_segments = []
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
speaker_segments.append({
'start_time': turn.start,
'end_time': turn.end,
'speaker': speaker
})
audio = self.load_audio(audio_path)
chunks = self.preprocess_audio(audio)
mms_model, mms_processor = self.load_mms()
translation_model, translation_tokenizer = None, None
if translate:
translation_model, translation_tokenizer = self.load_T2T_translation_model()
# Process chunks
results = []
for chunk_data in chunks:
result = self.process_chunk(
chunk_data,
mms_model,
mms_processor,
translation_model,
translation_tokenizer
)
if result:
for segment in speaker_segments:
if int(segment['start_time']) <= int(chunk_data['start_time']) < int(segment['end_time']):
result['speaker'] = segment['speaker']
break
results.append(result)
# results.append(result)
# Merge close segments and clean up
merged_results = self.merge_close_segments(results)
_translation = ""
_output = ""
for res in merged_results:
_translation+=res['translated']
_output+=f"{res['start_time']}-{res['end_time']} - Speaker: {res['speaker'].split('_')[1]} - Language: {res['detected_language']}\n Text: {res['text']}\n Translation: {res['translated']}\n\n"
logger.info(f"\n\n TRANSLATION: {_translation}")
return _translation, _output
def load_audio(self, audio_path):
"""
Load and preprocess audio file.
"""
waveform, sample_rate = torchaudio.load(audio_path)
# Convert to mono if stereo
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0)
else:
waveform = waveform.squeeze(0)
# Resample if necessary
if sample_rate != self.sample_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=sample_rate,
new_freq=self.sample_rate
)
waveform = resampler(waveform)
return waveform.float() |