File size: 6,899 Bytes
e1bae5b
4c0be85
e368f8b
fb79caf
e368f8b
 
 
 
 
8cc69ea
0427f41
8cc69ea
fb79caf
e368f8b
 
 
 
 
 
fb79caf
e368f8b
 
 
0427f41
e368f8b
 
0427f41
e368f8b
 
341746e
e368f8b
 
 
 
 
b815c4a
e368f8b
 
 
 
 
 
 
 
 
 
 
 
f427fe9
8cc69ea
1a539e2
e368f8b
 
0427f41
d41ad56
c1cd1f5
0427f41
 
 
e368f8b
0427f41
 
 
e368f8b
0427f41
 
 
 
e368f8b
0427f41
 
 
 
 
 
 
 
 
 
 
 
2caaec7
 
 
6d2ca12
8cc69ea
1a539e2
f4644ed
e368f8b
 
1a539e2
e368f8b
1a539e2
e368f8b
 
1a539e2
f4644ed
 
919e3f1
1a539e2
 
e368f8b
 
 
 
6d2ca12
8cc69ea
1a539e2
e368f8b
 
 
 
 
 
0427f41
 
c1cd1f5
e368f8b
 
c1cd1f5
e368f8b
 
 
 
 
 
 
7f5deab
8cc69ea
e368f8b
 
8cc69ea
e368f8b
 
 
 
 
 
 
 
470c6fe
 
 
e368f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470c6fe
 
7fc8342
f4644ed
 
e368f8b
 
470c6fe
 
e368f8b
 
 
 
 
470c6fe
e368f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5deab
e368f8b
375457e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import json
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import logging
import traceback
import sys
from audio_processing import AudioProcessor
import spaces 
from chunkedTranscriber import ChunkedTranscriber


logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

def load_qa_model():
    """Load question-answering model"""
    try:
        model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
        qa_pipeline = pipeline(
            "text-generation",
            model="hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
            model_kwargs={"torch_dtype": torch.bfloat16},
            device_map="auto",
            use_auth_token=os.getenv("HF_TOKEN")
        )
        return qa_pipeline
    except Exception as e:
        logger.error(f"Failed to load Q&A model: {str(e)}")
        return None

def load_summarization_model():
    """Load summarization model"""
    try:
        summarizer = pipeline(
            "summarization", 
            model="sshleifer/distilbart-cnn-12-6",
            device=0 if torch.cuda.is_available() else -1
        )
        return summarizer
    except Exception as e:
        logger.error(f"Failed to load summarization model: {str(e)}")
        return None


@spaces.GPU(duration=120)
def process_audio(audio_file, translate=False):
    """Process audio file"""
    transcriber = ChunkedTranscriber(chunk_size=5, overlap=1)
    results = transcriber.transcribe_audio(audio_file, translate=True)
    return results
    # try:
    #     processor = AudioProcessor()
    #     language_segments, final_segments = processor.process_audio(audio_file, translate)
        
    #     # Format output
    #     transcription = ""
    #     full_text = ""
        
    #     # Add language detection information
    #     for segment in language_segments:
    #         transcription += f"Language: {segment['language']}\n"
    #         transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
        
    #     # Add transcription/translation information
    #     transcription += "Transcription with language detection:\n\n"
    #     for segment in final_segments:
    #         transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}):\n"
    #         transcription += f"Original: {segment['text']}\n"
    #         if translate and 'translated' in segment:
    #             transcription += f"Translated: {segment['translated']}\n"
    #             full_text += segment['translated'] + " "
    #         else:
    #             full_text += segment['text'] + " "
    #         transcription += "\n"
    #     return transcription, full_text
    # except Exception as e:
    #     logger.error(f"Audio processing failed: {str(e)}")
    #     raise gr.Error(f"Processing failed: {str(e)}")


@spaces.GPU(duration=120)
def summarize_text(text):
    """Summarize text"""
    try:
        
        summarizer = load_summarization_model()
        
        if summarizer is None:
            return "Summarization model could not be loaded."
        logger.info("Successfully loaded summarization Model")
        data = json.loads(text)
        translated_text = ''.join(item['translated'] for item in data if 'translated' in item)
        # full_text = ''.join(item['translated'] for item in results if 'translated' in item)
        logger.info(f"\n\nWorking on text:\n{full_text}")
        summary = summarizer( full_text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
        return summary
    except Exception as e:
        logger.error(f"Summarization failed: {str(e)}")
        return "Error occurred during summarization."


@spaces.GPU(duration=120)
def answer_question(context, question):
    """Answer questions about the text"""
    try:
        qa_pipeline = load_qa_model()
        if qa_pipeline is None:
            return "Q&A model could not be loaded."
        if not question : 
            return "Please enter your Question"

        messages = [
            {"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
            {"role": "user", "content": f"Context: {''.join(item['translated'] for item in context if 'translated' in item)}\n\nQuestion: {question}"}
        ]
        
        response = qa_pipeline(messages, max_new_tokens=256)[0]['generated_text']
        return response
    except Exception as e:
        logger.error(f"Q&A failed: {str(e)}")
        return f"Error occurred during Q&A process: {str(e)}"


# Create Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Automatic Speech Recognition for Indic Languages")
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="filepath")
            translate_checkbox = gr.Checkbox(label="Enable Translation")
            process_button = gr.Button("Process Audio")
        
        with gr.Column():
            # ASR_RESULT = gr.Textbox(label="Output")
            full_text_output = gr.Textbox(label="Full Text", lines=5)
            translation_output = gr.Textbox(label="Transcription/Translation", lines=10)
    
    with gr.Row():
        with gr.Column():
            summarize_button = gr.Button("Summarize")
            summary_output = gr.Textbox(label="Summary", lines=3)
            
        with gr.Column():
            question_input = gr.Textbox(label="Ask a question about the transcription")
            answer_button = gr.Button("Get Answer")
            answer_output = gr.Textbox(label="Answer", lines=3)
    
    # Set up event handlers
    process_button.click(
        process_audio,
        inputs=[audio_input, translate_checkbox],
        outputs=[translation_output, full_text_output]
        # outputs=[ASR_RESULT]
    )
    # logger.info(f"{ASR_RESULT}")
    # translated_text = ''.join(item['translated'] for item in ASR_RESULT if 'translated' in item)
    summarize_button.click(
        summarize_text,
        # inputs=[ASR_RESULT],
        inputs=[translation_output],
        outputs=[summary_output]
    )
    
    answer_button.click(
        answer_question,
        inputs=[translation_output, question_input],
        outputs=[answer_output]
    )
    
    # Add system information
    gr.Markdown(f"""
    ## System Information
    - Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
    - CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
    
    ## Features
    - Automatic language detection
    - High-quality transcription using MMS
    - Optional translation to English
    - Text summarization
    - Question answering
    """)

if __name__ == "__main__":
    iface.launch(server_port=None)