Spaces:
Sleeping
Sleeping
Niraj70194
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,33 +13,40 @@ segmentation_model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit
|
|
13 |
depth_feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
14 |
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
15 |
|
16 |
-
def apply_gaussian_blur(image):
|
17 |
# Resize and preprocess the image
|
18 |
image = image.resize((512, 512)).convert("RGB")
|
19 |
-
inputs =
|
20 |
|
21 |
-
# Perform segmentation
|
22 |
with torch.no_grad():
|
23 |
-
outputs =
|
24 |
logits = outputs.logits
|
25 |
-
segmentation = torch.argmax(logits, dim=1)[0]
|
26 |
-
|
27 |
-
# Create a binary mask for the 'person' class (index 12)
|
28 |
-
person_index = 12
|
29 |
-
binary_mask = (segmentation == person_index).numpy().astype(np.uint8) * 255
|
30 |
|
31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
image_np = np.array(image)
|
|
|
|
|
33 |
blurred_image = cv2.GaussianBlur(image_np, (0, 0), sigmaX=15, sigmaY=15)
|
34 |
|
35 |
# Normalize the mask to range between 0 and 1
|
36 |
normalized_mask = binary_mask / 255.0
|
37 |
-
normalized_mask = np.expand_dims(normalized_mask, axis=-1)
|
38 |
|
39 |
-
# Create the composite image
|
40 |
final_image = (image_np * normalized_mask + blurred_image * (1 - normalized_mask)).astype(np.uint8)
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
def apply_lens_blur(image):
|
45 |
# Resize and preprocess the image
|
|
|
13 |
depth_feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
14 |
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
15 |
|
16 |
+
def apply_gaussian_blur(image: Image.Image) -> Image.Image:
|
17 |
# Resize and preprocess the image
|
18 |
image = image.resize((512, 512)).convert("RGB")
|
19 |
+
inputs = image_processor(image, return_tensors="pt")
|
20 |
|
21 |
+
# Perform semantic segmentation using the model
|
22 |
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
logits = outputs.logits
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Get the predicted class for each pixel
|
27 |
+
segmentation = torch.argmax(logits, dim=1)[0] # Shape: [height, width]
|
28 |
+
|
29 |
+
# Create a binary mask for the 'person' class
|
30 |
+
person_index = 12 # Assuming 12 is the 'person' class index
|
31 |
+
binary_mask = (segmentation == person_index).numpy().astype(np.uint8) * 255 # Convert to 0 and 255
|
32 |
+
|
33 |
+
# Convert the original image to a numpy array
|
34 |
image_np = np.array(image)
|
35 |
+
|
36 |
+
# Apply Gaussian blur to the entire image
|
37 |
blurred_image = cv2.GaussianBlur(image_np, (0, 0), sigmaX=15, sigmaY=15)
|
38 |
|
39 |
# Normalize the mask to range between 0 and 1
|
40 |
normalized_mask = binary_mask / 255.0
|
41 |
+
normalized_mask = np.expand_dims(normalized_mask, axis=-1) # Add channel dimension
|
42 |
|
43 |
+
# Create the composite image with the blurred background
|
44 |
final_image = (image_np * normalized_mask + blurred_image * (1 - normalized_mask)).astype(np.uint8)
|
45 |
|
46 |
+
# Convert back to PIL Image
|
47 |
+
final_image_pil = Image.fromarray(final_image)
|
48 |
+
|
49 |
+
return final_image_pil
|
50 |
|
51 |
def apply_lens_blur(image):
|
52 |
# Resize and preprocess the image
|