File size: 7,665 Bytes
c771a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
import torch
import random
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from torch import autocast, inference_mode
import re

def randomize_seed_fn(seed, randomize_seed):
    if randomize_seed:
        seed = random.randint(0, np.iinfo(np.int32).max)
    torch.manual_seed(seed)
    return seed

def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):

  #  inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf, 
  #  based on the code in https://github.com/inbarhub/DDPM_inversion
   
  #  returns wt, zs, wts:
  #  wt - inverted latent
  #  wts - intermediate inverted latents
  #  zs - noise maps

  sd_pipe.scheduler.set_timesteps(num_diffusion_steps)

  # vae encode image
  with autocast("cuda"), inference_mode():
      w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()

  # find Zs and wts - forward process
  wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=False, num_inference_steps=num_diffusion_steps)
  return zs, wts



def sample(zs, wts, prompt_tar="", skip=36, cfg_scale_tar=15, eta = 1):

    # reverse process (via Zs and wT)
    w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=False, zs=zs[skip:])
    
    # vae decode image
    with autocast("cuda"), inference_mode():
        x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
    if x0_dec.dim()<4:
        x0_dec = x0_dec[None,:,:,:]
    img = image_grid(x0_dec)
    return img

# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")



def get_example():
    case = [
        [
            'Examples/gnochi_mirror.jpeg', 
            'Watercolor painting of a cat sitting next to a mirror',
            'Examples/gnochi_mirror_watercolor_painting.png', 
            '',
            100,
            3.5,
            36,
            15,
 
             ],
        [
            'Examples/source_an_old_man.png', 
            'A bronze statue of an old man',
            'Examples/ddpm_a_bronze_statue_of_an_old_man.png', 
            '',
            100,
            3.5,
            36,
            15,
 
             ],
        [
            'Examples/source_a_ceramic_vase_with_yellow_flowers.jpeg', 
            'A pink ceramic vase with a wheat bouquet',
            'Examples/ddpm_a_pink_ceramic_vase_with_a_wheat_bouquet.png', 
            '',
            100,
            3.5,
            36,
            15,
 
             ],

        [
            'Examples/source_a_model_on_a_runway.jpeg', 
            'A zebra on the runway',
            'Examples/ddpm_a_zebra_on_the_run_way.png', 
            '',
            100,
            3.5,
            36,
            15,
 
             ]
    
    
    ]
    return case







########
# demo #
########
                        
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
   Edit Friendly DDPM Inversion
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
Based on the work introduced in:
<a href="https://arxiv.org/abs/2304.06140" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a> 
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co./spaces/LinoyTsaban/edit_friendly_ddpm_inversion?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks(css='style.css') as demo:
    
    def reset_do_inversion():
        do_inversion = True
        return do_inversion


    def edit(input_image,
            do_inversion, 
             wts, zs,
            src_prompt ="", 
            tar_prompt="",
            steps=100,
            cfg_scale_src = 3.5,
            cfg_scale_tar = 15,
            skip=36,
            seed = 0,
            randomize_seed  = True):

        x0 = load_512(input_image, device=device)
    
        if do_inversion or randomize_seed:
            zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
            wts = gr.State(value=wts_tensor)
            zs = gr.State(value=zs_tensor)
            do_inversion = False
        
        output = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=cfg_scale_tar)    
        return output, wts, zs, do_inversion
    
    gr.HTML(intro)
    wts = gr.State()
    zs = gr.State()
    do_inversion = gr.State(value=True)
    with gr.Row():
        input_image = gr.Image(label="Input Image", interactive=True)
        input_image.style(height=365, width=365)
        output_image = gr.Image(label=f"Edited Image", interactive=False)
        output_image.style(height=365, width=365)
    
    with gr.Row():
        tar_prompt = gr.Textbox(lines=1, label="Describe your desired edited output", interactive=True)

    with gr.Row():
        with gr.Column(scale=1, min_width=100):
            edit_button = gr.Button("Run")



    with gr.Accordion("Advanced Options", open=False):
        with gr.Row():
            with gr.Column():
                #inversion
                src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="describe the original image")
                steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
                cfg_scale_src = gr.Slider(minimum=1, maximum=15, value=3.5, label=f"Source Guidance Scale", interactive=True)
            with gr.Column():
                # reconstruction
                skip = gr.Slider(minimum=0, maximum=60, value=36, step = 1, label="Skip Steps", interactive=True)
                cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
                seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
                randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
            

    edit_button.click(
        fn = randomize_seed_fn,
        inputs = [seed, randomize_seed],
        outputs = [seed], queue = False).then(
        fn=edit,
        inputs=[input_image,
                do_inversion, wts, zs, 
            src_prompt, 
            tar_prompt,
            steps,
            cfg_scale_src,
            cfg_scale_tar,
            skip,
            seed,randomize_seed 
        ],
        outputs=[output_image, wts, zs, do_inversion],
    )

    input_image.change(
        fn = reset_do_inversion,
        outputs = [do_inversion]
    )

    src_prompt.change(
        fn = reset_do_inversion,
        outputs = [do_inversion]
    )


    gr.Examples(
        label='Examples', 
        examples=get_example(), 
        inputs=[input_image, tar_prompt,output_image, src_prompt,steps,
                    cfg_scale_tar,
                    skip,
                    cfg_scale_tar
                    
               ],
        outputs=[output_image ],
    )



demo.queue()
demo.launch(share=False)